深度学习5大挑战
这些变量其实就是因果概念中的“干预”问题。由此,人们提出了简单的算法来模拟干预,以专门测试分类和识别模型的泛化能力,如空间偏移、模糊、亮度或对比度的变化、背景控制和旋转,以及在多种环境中采集的图像等。有人认为这些修正可能是不够的,在独立同分布假设之外进行泛化不仅需要学习变量之间的统计关联,还需要学习潜在的因果模型,以明确数据生成的机制,并允许通过干预概念模拟分布变化。从这个意义上说,发现因果关系意味着获得可靠的知识,这些知识不受观察到的数据分布和训练任务的限制,从而为可解释的学习提供明确的说明。