7
社区成员




课程名称 | 适应人群 |
---|---|
YOLOv5实战训练自己的数据集(Windows和Ubuntu演示) | 希望学习YOLOv5目标检测的学员 |
YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而高性能,更加灵活和易用,当前非常流行。
本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。
本课程的YOLOv5使用ultralytics/yolov5,在Windows和Ubuntu系统上分别做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集(自动划分训练集和验证集)、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。
除本课程《YOLOv5实战训练自己的数据集(Windows和Ubuntu演示)》外,本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:
《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428
《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087
《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303
《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451
《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669
《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744
《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209
《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284
老师,我这里报错,是怎么回事呢Traceback (most recent call last):
File "D:\Anaconda\lib\site-packages\git_init.py", line 89, in
refresh()
File "D:\Anaconda\lib\site-packages\git_init.py", line 76, in refresh
if not Git.refresh(path=path):
File "D:\Anaconda\lib\site-packages\git\cmd.py", line 392, in refresh
raise ImportError(err)
ImportError: Bad git executable.
The git executable must be specified in one of the following ways:
- be included in your $PATH
- be set via $GIT_PYTHON_GIT_EXECUTABLE
- explicitly set via git.refresh()
All git commands will error until this is rectified.
This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
- quiet|q|silence|s|none|n|0: for no warning or exception
- warn|w|warning|1: for a printed warning
- error|e|raise|r|2: for a raised exception
Example:
export GIT_PYTHON_REFRESH=quiet
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "D:\yolov5-master\train.py", line 72, in
GIT_INFO = check_git_info()
File "D:\Anaconda\lib\contextlib.py", line 79, in inner
return func(*args, **kwds)
File "D:\yolov5-master\utils\general.py", line 370, in check_git_info
import git
File "D:\Anaconda\lib\site-packages\git_init_.py", line 91, in
raise ImportError("Failed to initialize: {0}".format(_exc)) from _exc
ImportError: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:
- be included in your $PATH
- be set via $GIT_PYTHON_GIT_EXECUTABLE
- explicitly set via git.refresh()
All git commands will error until this is rectified.
This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
- quiet|q|silence|s|none|n|0: for no warning or exception
- warn|w|warning|1: for a printed warning
- error|e|raise|r|2: for a raised exception
Example:
export GIT_PYTHON_REFRESH=quiet
老师,这个github上的标注工具找不到了,请问您能发一个在群里面吗?
电脑上视频播放时,屏幕左上可看到“下载课件”的链接。先下载课件,项目流程的课件中有课程网盘链接,可下载其它课程资料。
(ws_pytorch) cola@cola-NKx0Sx:~/桌面/yolov5-ball$ python train.py --data data/voc_ball.yaml --cfg models/yolov5s_ball.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --workers 4
wandb: WARNING ⚠️ wandb is deprecated and will be removed in a future release. See supported integrations at https://github.com/ultralytics/yolov5#integrations.
wandb: Currently logged in as: 1215061546. Use wandb login --relogin
to force relogin
train: weights=weights/yolov5s.pt, cfg=models/yolov5s_ball.yaml, data=data/voc_ball.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=50, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=4, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
Traceback (most recent call last):
File "train.py", line 642, in
main(opt)
File "train.py", line 506, in main
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
File "/home/cola/桌面/yolov5-ball/utils/general.py", line 458, in check_file
assert len(files), f'File not found: {file}' # assert file was found
AssertionError: File not found: data/voc_ball.yaml
按着你的步骤一步步来的,还是出错了,这些问题该怎么解决**
老师您好,我看到您在模型性能统计这里用的是验证集做统计而不是用测试集,请问这个统计结果可以用于论文上吗?验证集在YOLOv5训练的过程中会参与训练吗?