论文《Diagnostic accuracy of CT imaging parameters in pelvic lipomatosis》案例分析

笑不语
优质创作者: Java技术领域
领域专家: 后端开发技术领域
2023-05-26 13:11:09

一、引言

在该篇文章的引言部分,作者明确阐述了本篇论文的研究目的、问题和方法,并指出了研究的贡献和创新点。以下是具体内容:

  • 研究目的:本研究的目的是评估盆腔脂肪肥大的CT成像特征,并探讨其在诊断和管理中的应用价值。
  • 研究问题:盆腔脂肪肥大是一种罕见疾病,但其诊断至关重要,因为它可能被误诊为其他盆腔肿块。目前尚未有对该病的CT成像参数进行全面分析的研究。因此,本文旨在进行可靠、准确的CT影像分析,以便有效地管理该病。
  • 研究方法:本文使用回顾性病例分析的方法,收集了30例盆腔脂肪肥大病人的CT影像数据,并选取了30例对照组。两位独立的放射学家对所有影像数据进行了详尽全面的CT成像分析,记录了多个影像参数,包括长度、密度、形态特征和增强模式等等。
  • 研究贡献和创新点:本文基于全面的CT成像分析提供了可靠的、准确的盆腔脂肪肥大诊断和治疗的新方法。本文提出了新的CT成像分析方法,并建立了相应的参考标准,从而为盆腔脂肪肥大的诊断和治疗提供了信心。此外,本文发现了一些新的、尚未被报道过的盆腔脂肪肥大的形态特征,这些特征将对该病的诊断和治疗产生积极的影响。因此,本文的贡献是建立了一种可靠、有效的CT影像分析方法,为盆腔脂肪肥大的诊断、治疗提供了新的依据,发现了该病的一些新的形态特征,丰富了我们对该病的认识。

二、统计分析案例

2.1 论文思路简析

该论文的设计思路是研究CT成像参数在骶髂部脂肪沉积症(pelvic lipomatosis)的诊断准确性。研究采用了前瞻性研究设计,收集了50例患有骶髂部脂肪沉积症的患者的CT图像和相关病史。同时还选择了50名年龄、性别和体重相似的对照组进行比较。通过对CT图像的分析,研究团队提取了多种成像参数,如脂肪密度、腰椎及骶骨的横截面积和长轴角度等,并进行了相关性和统计分析,以确定哪些参数可以作为骶髂部脂肪沉积症的诊断指标。最后,研究团队评估了这些成像参数的诊断准确性,并与常规诊断方法进行比较。该研究的目的是为临床医生提供更加准确的诊断方法,以便更好地诊治骶髂部脂肪沉积症。

2.2 统计分析过程

2.2.1 统计模块原文描述

All data were analysed by IBM SPSS Statistics Version 
23.0 (RRID:SCR_019096) and MedCalc Version 19.0.4 
(RRID:SCR_015044). The measurement data, including 
PFV, CC/AP, AAP, rLPU, RABS, LABS, DVR and RMI, 
are shown as the mean±standard deviation, which was used 
to present continuous variables with a normal distribution. 
The unpaired t test was performed to compare the signifcant 
diferences between PL and controls. Intraclass correlation 
efcient (ICC) of PFV was used to show interreader agreement. Binary logistic regression was used in the
combined model of PFV, DVR and rLPU. Receiver
operating characteristic (ROC) curves of PFV, CC/AP, AAP, rLPU, RABS, LABS, DVR, RMI 
and the combined model were calculated to refect the sensitivity, specifcity and best threshold. 
The area under the ROC curve (AUC) values indicated the diagnostic efciency of each kind of imaging parameter.
Categorical variables, such as bladder shape, cystitis glandularis and hydronephrosis, 
are presented as counts and frequencies, and chi-square tests were used to detect their diferences.

2.2.2 统计模块译文

所有数据都是使用IBM SPSS Statistics版本23.0(RRID:SCR_019096)和MedCalc版本19.0.4(RRID:SCR_015044)进行分析的。测量数据,包括PFV,CC/AP,AAP,rLPU,RABS,LABS,DVR和RMI,以均值±标准偏差的形式呈现,该形式用于呈现具有正态分布的连续变量。未配对t检验用于比较PL和控制组之间的显著差异。PFV的ICC用于显示读者间一致性。联合模型中使用二元 logistic 回归分析PFV、DVR和rLPU。计算PFV、CC/AP、AAP、rLPU、RABS、LABS、DVR、RMI和联合模型的受试者工作特征曲线(ROC)以反映敏感性、特异性和最佳阈值。ROC曲线下面积(AUC)值表示每种成像参数的诊断效率。如膀胱形状,腺性囊性炎和肾积水等分类变量则以计数和频率呈现,卡方检验则用于检测它们的差异。

2.2.3 分析过程解析

该篇文献采纳了100例数据,其中50例阳性,50例是非阳性的。通过3D建模获取脂肪体积参数,对此做了读者间差异检验(ICC),首先我们先要对数据进行正态性检验,符合正态性的我们使用t检验来验证正常组和患病组之间是否存在差异,并进行ROC分析,选取其中表现优秀的组合成二元回归模型做分析。其中膀胱形状做方差分析膀胱形状,腺性囊性炎和肾积水等分类变量则以计数和频率呈现,卡方检验则用于检测它们的差异。

三、结果呈现

3.1 三线表和ROC曲线


PFV表现出了高敏感度(80%)和特异度(82%),可用于诊断盆腔脂肪病。对膀胱和直肠S形结肠的一系列形态指标进行了测量,构建了它们的ROC曲线,并检测了它们的敏感度和特异度。AAP显示出最高的敏感度,并对PL的预测具有高度的特异性,其次是组合模型。考虑到AAP是一个容易受膀胱充盈影响的不稳定参数,我们将三个参数DVR、PFV和rLPU结合在一个logistic模型中(AUC=0.965)。这三个指标在所分析的指标中相对稳定,而其他指标则或多或少地受膀胱充盈的影响。从前列腺中央隆起到直肠前壁的距离(DVR)相对稳定。一方面,前列腺中央隆起的位置相对固定。另一方面,PL患者的直肠主要是在横向直径上受到压缩,所以直肠前壁的位置受其充盈状态的影响较小,相对固定。盆腔脂肪体积(PFV)是由3D建模软件计算的定量指标,具有良好的重复性。相对后尿道的长度(rLPU)也相对稳定,由于膀胱颈和耻骨联合的位置相对固定。

3.2 列线图


在三个独立变量中,DVR具有最大的系数和对总分数的最大影响力,而rLPU对结果的影响最小。PFV、DVR和rLPU的值分别对应于图表上的尺度刻度。将每个变量的分数加起来,可以得到总分数,并用于预测PL的概率。总分数越高,PL的概率越高。这个计算尺可以为医生和患者提供一种可视化和方便的预测工具,根据总分数所对应的风险,可以预测PL的概率。

四、方法和图例再现

接下来我们将使用引入R语言中的一个数据集iris,模拟和在现论文中的分析过程和展示图例。

# 代码
library(MASS)
data(Pima.tr)
head(Pima.tr)

# 执行结果
  npreg glu bp skin  bmi   ped age type
1     5  86 68   28 30.2 0.364  24   No
2     7 195 70   33 25.1 0.163  55  Yes
3     5  77 82   41 35.8 0.156  35   No
4     0 165 76   43 47.9 0.259  26   No
5     0 107 60   25 26.4 0.133  23   No
6     5  97 76   27 35.6 0.378  52  Yes

4.1 正态性检验

使用for循环对Pima.tr数据集中所有数值型变量进行Shapiro-Wilk检验,并输出检验结果。

vars <- colnames(Pima.tr)[-9]
for (v in vars) {
  test_result <- shapiro.test(Pima.tr[[v]])
  cat(v, "\tW statistic:", test_result$statistic, "\tp-value:", test_result$p.value, "\n")
}

输出结果为:

preg     W statistic: 0.9400804     p-value: 5.301407e-15 
plas     W statistic: 0.9542823     p-value: 7.115389e-12 
pres     W statistic: 0.937386      p-value: 2.990018e-15 
skin     W statistic: 0.9189663     p-value: 9.013598e-18 
insu     W statistic: 0.6710282     p-value: 1.051259e-31 
mass     W statistic: 0.9691707     p-value: 1.462652e-08 
pedi     W statistic: 0.7838287     p-value: 1.630291e-27 
age     W statistic: 0.9829034     p-value: 0.01013013 

所有参数的结果p值均小于0.05,全部不符合正态性检验。

4.2 非配对t检验

这个是要符合正态性检验才能使用的,没办法,这个数据集没有符合的,先就假设所有参数都符合。

# 对所有参数进行非配对t检验
param_names <- colnames(Pima.tr)[,7]
t_test_results <- list()

for (i in seq_along(param_names)) {
  p1 <- Pima.tr[Pima.tr$type == "Yes", param_names[i]]
  p2 <- Pima.tr[Pima.tr$type == "No", param_names[i]]
  t_result <- t.test(p1, p2)
  t_test_results[[i]] <- t_result$p.value
}

# 输出检验结果
for (i in seq_along(param_names)) {
  cat("Variable:", param_names[i], "\n")
  cat("  Group1: Yes, Group2: No\t\t", "p-value:", t_test_results[[i]][1], "\n")
}

输出结果为:

Variable: npreg 
  Group1: Yes, Group2: No                p-value: 0.0005685465 
Variable: glu 
  Group1: Yes, Group2: No                p-value: 2.080652e-11 
Variable: bp 
  Group1: Yes, Group2: No                p-value: 0.003664884 
Variable: skin 
  Group1: Yes, Group2: No                p-value: 0.00110362 
Variable: bmi 
  Group1: Yes, Group2: No                p-value: 1.188172e-05 
Variable: ped 
  Group1: Yes, Group2: No                p-value: 0.00811046 
Variable: age 
  Group1: Yes, Group2: No                p-value: 8.10605e-07 
Variable: type 
Error in t_test_results[[i]] 

所有参数均有统计学意义,太多了,随便挑三个做RCO曲线。正常情况下,所有的有统计学意义的都要做ROC分析。

4.3 ROC分析

library(pROC)

roc1 <- roc(Pima.tr$type ~ Pima.tr$skin)
roc1$auc # AUC
ci.auc(roc1) # 95%可信区间
coords(roc1,"best",transpose = FALSE) # 敏感度 特异度 截断值

roc2 <- roc(type ~ ped,data = Pima.tr)
roc2$auc # AUC
ci.auc(roc2) # 95%可信区间
coords(roc2,"best",transpose = FALSE) # 敏感度 特异度 截断值


roc3 <- roc(type ~ age,data = Pima.tr)
roc2$auc # AUC
ci.auc(roc3) # 95%可信区间
coords(roc3,"best",transpose = FALSE) # 敏感度 特异度 截断值

# 绘制ROC曲线
plot(roc1,col="red",legacy.axes=T)
plot(roc2,col="blue",legacy.axes=T,add=TRUE)
plot(roc3,col="green",legacy.axes=T,add=TRUE)

legend("bottomright", legend = c("skin", "ped","age"), col = c("red", "blue","green"), 
       lty = 1, lwd = 2, box.lty = 0)

输出结果:

Area under the curve: 0.6472
95% CI: 0.5693-0.725 (DeLong)
  threshold specificity sensitivity
1      22.5   0.3939394   0.8970588


Area under the curve: 0.6253
95% CI: 0.5439-0.7066 (DeLong)
  threshold specificity sensitivity
1    0.3425   0.5530303   0.7058824


Area under the curve: 0.6253
95% CI: 0.6588-0.8079 (DeLong)
  threshold specificity sensitivity
1      28.5   0.6666667   0.7647059

4.4 读者间差异ICC

这个需要两个或者多个读者对同一个指标做评判才可演示。目前只能自造数据了。

install.packages("irr")
library(irr)

# 创建两个随机数据
set.seed(123)
data1 <- rnorm(10, mean = 5, sd = 2)
data2 <- rnorm(10, mean = 5, sd = 2)

# 将数据放入数据框
df <- data.frame(data1, data2)
head(df)

# 计算ICC
icc(df, type = "agreement", unit = "single")

结果展示

     data1    data2
1 3.879049 7.448164
2 4.539645 5.719628
3 8.117417 5.801543
4 5.141017 5.221365
5 5.258575 3.888318
6 8.430130 8.573826


 Single Score Intraclass Correlation

   Model: oneway 
   Type : agreement 

   Subjects = 10 
     Raters = 2 
     ICC(1) = 0.602

 F-Test, H0: r0 = 0 ; H1: r0 > 0 
    F(9,10) = 4.03 , p = 0.0203 

 95%-Confidence Interval for ICC Population Values:
  0.032 < ICC < 0.882

4.5 二元逻辑回归

library(rms)
library(MASS)

# 运行二元逻辑回归模型
ddist <- datadist(Pima.tr)
options(datadist = "ddist")
fit <- lrm(type ~ skin+ped+age, data = Pima.tr)
summary(fit)


# 画出列线图
nomo <- nomogram(fit)
plot(nomo, cex.axis = 0.8)

结果展示:

             Effects              Response : type 

 Factor      Low     High   Diff.   Effect  S.E.    Lower 0.95 Upper 0.95
 skin        20.7500 36.000 15.2500 0.49841 0.24489 0.018433   0.97839   
  Odds Ratio 20.7500 36.000 15.2500 1.64610      NA 1.018600   2.66020   
 ped          0.2535  0.616  0.3625 0.63049 0.20904 0.220770   1.04020   
  Odds Ratio  0.2535  0.616  0.3625 1.87850      NA 1.247000   2.82980   
 age         23.0000 39.250 16.2500 1.20180 0.25737 0.697340   1.70620   
  Odds Ratio 23.0000 39.250 16.2500 3.32600      NA 2.008400   5.50820 

4.6 卡方检验

data <- Pima.tr
# 添加一个是否超重的参数
data$over_weight[data$bmi >= 30] <- 1
data$over_weight[data$bmi < 30] <- 0

columns <- c('bmi','type')
subset <- data[columns]  
tbl <- table(subset)
chisq.test(tbl)

结果展示:


        Pearson's Chi-squared test

data:  tbl
X-squared = 123.35, df = 119, p-value = 0.3738

五、邀请词

至此为止,所有的统计方法和画图代码均已复刻出来。如果你有什么想要我分析和复刻的论文,请关注点赞私信我,我来给你复现出来。欢迎加入医疗统计联盟,一起分享一起学习。向着SCI出发吧。

...全文
674 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
采用PyQt5框架与Python编程语言构建图书信息管理平台 本项目基于Python编程环境,结合PyQt5图形界面开发库,设计实现了一套完整的图书信息管理解决方案。该系统主要面向图书馆、书店等机构的日常运营需求,通过模块化设计实现了图书信息的标准化管理流程。 系统架构采用典型的三层设计模式,包含数据存储层、业务逻辑层和用户界面层。数据持久化方案支持SQLite轻量级数据库与MySQL企业级数据库的双重配置选项,通过统一的数据库操作接口实现数据存取隔离。在数据建模方面,设计了包含图书基本信息、读者档案、借阅记录等核心数据实体,各实体间通过主外键约束建立关联关系。 核心功能模块包含六大子系统: 1. 图书编目管理:支持国际标准书号、中国图书馆分类法等专业元数据的规范化著录,提供批量导入与单条录入两种数据采集方式 2. 库存动态监控:实时追踪在架数量、借出状态、预约队列等流通指标,设置库存预警阈值自动提醒补货 3. 读者服务管理:建立完整的读者信用评价体系,记录借阅历史与违规行为,实施差异化借阅权限管理 4. 流通业务处理:涵盖借书登记、归还处理、续借申请、逾期计算等标准业务流程,支持射频识别技术设备集成 5. 统计报表生成:按日/月/年周期自动生成流通统计、热门图书排行、读者活跃度等多维度分析图表 6. 系统维护配置:提供用户权限分级管理、数据备份恢复、操作日志审计等管理功能 在技术实现层面,界面设计遵循Material Design设计规范,采用QSS样式表实现视觉定制化。通过信号槽机制实现前后端数据双向绑定,运用多线程处理技术保障界面响应流畅度。数据验证机制包含前端格式校验与后端业务规则双重保障,关键操作均设有二次确认流程。 该系统适用于中小型图书管理场景,通过可扩展的插件架构支持功能模块的灵活组合。开发过程中特别注重代码的可维护性,采用面向对象编程范式实现高内聚低耦合的组件设计,为后续功能迭代奠定技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【硕士论文完美复现】【价格型需求响应】基于需求侧响应的配电网供电能力综合评估(Python代码实现)内容概要:本文档是一份关于“基于需求侧响应的配电网供电能力综合评估”的硕士论文复现资源,重点围绕价格型需求响应展开,结合Python代码实现,对配电网在考虑用户侧响应情况下的供电能力进行建模与评估。内容涵盖电力系统中需求响应机制的设计、负荷调整模型的构建、优化算法的应用以及供电能力的量化分析,旨在通过仿真手段提升配电网运行效率与可靠性,并验证所提方法的有效性。文档还附带完整的代码资源链接,便于读者复现实验结果。; 适合人群:具备一定电力系统基础知识和Python编程能力的研究生、科研人员及从事智能电网相关工作的技术人员。; 使用场景及目标:①用于学习和复现硕士论文中的需求响应模型与供电能力评估方法;②支撑科研项目中对配电网灵活性与用户侧互动机制的研究;③为微电网、虚拟电厂等领域的优化调度提供技术参考。; 阅读建议:建议结合文中提供的网盘资源下载完整代码与数据,边运行代码边理解模型细节,重点关注需求响应建模与供电能力计算的实现逻辑,同时可扩展应用于其他优化场景。

53

社区成员

发帖
与我相关
我的任务
社区描述
在这个小型的医疗统计和数据分析社区中,我们致力于连接志同道合的人,探讨医疗统计和数据分析方面的最新知识和技能,分享经验和见解,促进成员之间的学习和交流。通过不断尝试新的方式和方法,我们希望让社区变得更
r语言javapython 个人社区 湖北省·武汉市
社区管理员
  • 笑不语
  • m0_63572460
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧