社区
下载资源悬赏专区
帖子详情
A Modern Introduction To Quantum Field Theory下载
weixin_39821051
2023-08-04 09:31:15
(Oxford Master Series In Statistical, Computational, And Theoretical Physics) (Michele Maggiore) , 相关下载链接:
https://download.csdn.net/download/chihiru/1073496?utm_source=bbsseo
...全文
7
回复
打赏
收藏
A Modern Introduction To Quantum Field Theory下载
(Oxford Master Series In Statistical, Computational, And Theoretical Physics) (Michele Maggiore) , 相关下载链接:https://download.cs
复制链接
扫一扫
分享
转发到动态
举报
写回复
配置赞助广告
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
打赏红包
A
Mode
rn
Int
roduct
ion
To
Qu
ant
um
Field
Theory
(Oxford Master Series In Statistical, Computat
ion
al, And Theoretical Physics) (Michele Maggiore)
The Princeton Compan
ion
to Mathematics
The Princeton Compan
ion
to Mathematics 作者: Gowers, Timothy (EDT)/ Barrow-Green, June (EDT)/ Leader, Imre (EDT) 出版社: Princeton University Press 出版日期: 2008-9-28 总页数: 1056 定价: USD 99.50 装帧: Hardcover ISBN: 9780691118802 ************************************************************ This is a one-of-a-kind reference for anyone with a serious
int
erest in mathematics. Edited by Timothy Gowers, a recipient of the
Field
s Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that
int
roduce basic mathematical tools and vocabulary; trace the development of
mode
rn
mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more. Unparalleled in its depth of coverage, The Princeton Compan
ion
to Mathematics surveys the most active and exciting branches of pure mathematics, providing the context and broad perspective that are vital at a time of increasing specializat
ion
in the
field
. Packed with informat
ion
and presented in an accessible style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. * Features nearly 200 entries, organized thematically and written by an
int
e
rn
at
ion
al team of distinguished contributors * Presents major ideas and branches of pure mathematics in a clear, accessible style * Defines and explains import
ant
mathematical concepts, methods, theorems, and open problems *
Int
roduces the language of mathematics and the goals of mathematical research * Covers n
um
ber
theory
, algebra, analysis, geometry, logic, probability, and more * Traces the history and development of
mode
rn
mathematics * Profiles more than ninety-five mathematicians who influenced those working today * Explores the influence of mathematics on other disciplines * Includes bibliographies, cross-references, and a comprehensive index ************************************************************ 目录: TABLE OF CONTENTS: Preface ix Contributors xvii Part I
Int
roduct
ion
I.1 What Is Mathematics About? 1 I.2 The Language and Grammar of Mathematics 8 I.3 Some Fundamental Mathematical Definit
ion
s 16 I.4 The General Goals of Mathematical Research 48 Part II The Origins of
Mode
rn
Mathematics II.1 From N
um
bers to N
um
ber Systems 77 II.2 Geometry 83 II.3 The Development of Abstract Algebra 95 II.4 Algorithms 106 II.5 The Development of Rigor in Mathematical Analysis 117 II.6 The Development of the Idea of Proof 129 II.7 The Crisis in the Foundat
ion
s of Mathematics 142 Part III Mathematical Concepts III.1 The Axiom of Choice 157 III.2 The Axiom of Determinacy 159 III.3 Bayesian Analysis 159 III.4 Braid Groups 160 III.5 Buildings 161 III.6 Calabi-Yau Manifolds 163 III.7 Cardinals 165 III.8 Categories 165 III.9 Compactness and Compactificat
ion
167 III.10 Computat
ion
al Complexity Classes 169 III.11 Countable and Uncountable Sets 170 III.12 C*-Algebras 172 III.13 Curvature 172 III.14 Designs 172 III.15 Determin
ant
s 174 III.16 Differential Forms and
Int
egrat
ion
175 III.17 Dimens
ion
180 III.18 Distribut
ion
s 184 III.19 Duality 187 III.20 Dynamical Systems and Chaos 190 III.21 Elliptic Curves 190 III.22 The Euclidean Algorithm and Continued Fract
ion
s 191 III.23 The Euler and Navier-Stokes E
qu
at
ion
s 193 III.24 Expanders 196 III.25 The Exponential and Logarithmic Funct
ion
s 199 III.26 The Fast Fourier Transform 202 III.27 The Fourier Transform 204 III.28 Fuchsian Groups 208 III.29 Funct
ion
Spaces 210 III.30 Galois Groups 213 III.31 The Gamma Funct
ion
213 III.32 Generating Funct
ion
s 214 III.33 Genus 215 III.34 Graphs 215 III.35 Hamiltonians 215 III.36 The Heat E
qu
at
ion
216 III.37 Hilbert Spaces 219 III.38 Homology and Cohomology 221 III.39 Homotopy Groups 221 III.40 The Ideal Class Group 221 III.41 Irrat
ion
al and Transcendental N
um
bers 222 III.42 The Ising
Mode
l 223 III.43 Jordan Normal Form 223 III.44 Knot Polynomials 225 III.45 K-
Theory
227 III.46 The Leech Lattice 227 III.47 L-Funct
ion
s 228 III.48 Lie
Theory
229 III.49 Linear and Nonlinear Waves and Solitons 234 III.50 Linear Operators and Their Properties 239 III.51 Local and Global in N
um
ber
Theory
241 III.52 The Mandelbrot Set 244 III.53 Manifolds 244 III.54 Matroids 244 III.55 Measures 246 III.56 Metric Spaces 247 III.57
Mode
ls of Set
Theory
248 III.58 Modular Arithmetic 249 III.59 Modular Forms 250 III.60 Moduli Spaces 252 III.61 The Monster Group 252 III.62 Normed Spaces and Banach Spaces 252 III.63 N
um
ber
Field
s 254 III.64 Optimizat
ion
and Lagrange Multipliers 255 III.65 Orbifolds 257 III.66 Ordinals 258 III.67 The Peano Axioms 258 III.68 Permutat
ion
Groups 259 III.69 Phase Transit
ion
s 261 III.70 p 261 III.71 Probability Distribut
ion
s 263 III.72 Projective Space 267 III.73
Qu
adratic Forms 267 III.74
Qu
ant
um
Computat
ion
269 III.75
Qu
ant
um
Groups 272 III.76
Qu
ate
rn
ion
s, Octon
ion
s, and Normed Divis
ion
Algebras 275 III.77 Representat
ion
s 279 III.78 Ricci Flow 279 III.79 Riemann Surfaces 282 III.80 The Riemann Zeta Funct
ion
283 III.81 Rings, Ideals, and Modules 284 III.82 Schemes 285 III.83 The Schrödinger E
qu
at
ion
285 III.84 The Simplex Algorithm 288 III.85 Special Funct
ion
s 290 III.86 The Spectr
um
294 III.87 Spherical Harmonics 295 III.88 Symplectic Manifolds 297 III.89 Tensor P
roduct
s 301 III.90 Topological Spaces 301 III.91 Transforms 303 III.92 Trigonometric Funct
ion
s 307 III.93 Universal Covers 309 III.94 Variat
ion
al Methods 310 III.95 Varieties 313 III.96 Vector Bundles 313 III.97 Von Ne
um
ann Algebras 313 III.98 Wavelets 313 III.99 The Zermelo-Fraenkel Axioms 314 Part IV Branches of Mathematics IV.1 Algebraic N
um
bers 315 IV.2 Analytic N
um
ber
Theory
332 IV.3 Computat
ion
al N
um
ber
Theory
348 IV.4 Algebraic Geometry 363 IV.5 Arithmetic Geometry 372 IV.6 Algebraic Topology 383 IV.7 Differential Topology 396 IV.8 Moduli Spaces 408 IV.9 Representat
ion
Theory
419 IV.10 Geometric and Combinatorial Group
Theory
431 IV.11 Harmonic Analysis 448 IV.12 Partial Differential E
qu
at
ion
s 455 IV.13 General Relativity and the Einstein E
qu
at
ion
s 483 IV.14 Dynamics 493 IV.15 Operator Algebras 510 IV.16 Mirror Symmetry 523 IV.17 Vertex Operator Algebras 539 IV.18 En
um
erative and Algebraic Combinatorics 550 IV.19 Extremal and Probabilistic Combinatorics 562 IV.20 Computat
ion
al Complexity 575 IV.21 N
um
erical Analysis 604 IV.22 Set
Theory
615 IV.23 Logic and
Mode
l
Theory
635 IV.24 Stochastic Processes 647 IV.25 Probabilistic
Mode
ls of Critical Phenomena 657 IV.26 High-Dimens
ion
al Geometry and Its Probabilistic Analogues 670 Part V Theorems and Problems V.1 The ABC Conjecture 681 V.2 The Atiyah-Singer Index Theorem 681 V.3 The Banach-Tarski Paradox 684 V.4 The Birch-Swinnerton-Dyer Conjecture 685 V.5 Carleson's Theorem 686 V.6 The Central Limit Theorem 687 V.7 The Classificat
ion
of Finite Simple Groups 687 V.8 Dirichlet's Theorem 689 V.9 Ergodic Theorems 689 V.10 Fermat's Last Theorem 691 V.11 Fixed Po
int
Theorems 693 V.12 The Four-Color Theorem 696 V.13 The Fundamental Theorem of Algebra 698 V.14 The Fundamental Theorem of Arithmetic 699 V.15 Gödel's Theorem 700 V.16 Gromov's Polynomial-Growth Theorem 702 V.17 Hilbert's Nullstellensatz 703 V.18 The Independence of the Continu
um
Hypothesis 703 V.19 Ine
qu
alities 703 V.20 The Insolubility of the Halting Problem 706 V.21 The Insolubility of the
Qu
int
ic 708 V.22 Liouville's Theorem and Roth's Theorem 710 V.23 Mostow's Strong Rigidity Theorem 711 V.24 The P versus NP Problem 713 V.25 The Poincaré Conjecture 714 V.26 The Prime N
um
ber Theorem and the Riemann Hypothesis 714 V.27 Problems and Results in Additive N
um
ber
Theory
715 V.28 From
Qu
adratic Reciprocity to Class
Field
Theory
718 V.29 Rat
ion
al Po
int
s on Curves and the Mordell Conjecture 720 V.30 The Resolut
ion
of Singularities 722 V.31 The Riemann-Roch Theorem 723 V.32 The Robertson-Seymour Theorem 725 V.33 The Three-Body Problem 726 V.34 The Uniformizat
ion
Theorem 728 V.35 The Weil Conjectures 729 Part VI Mathematicians VI.1 Pythagoras (ca. 569 B.C.E.-ca. 494 B.C.E.) 733 VI.2 Euclid (ca. 325 B.C.E.-ca. 265 B.C.E.) 734 VI.3 Archimedes (ca. 287 B.C.E.-212 B.C.E.) 734 VI.4 Apollonius (ca. 262 B.C.E.-ca. 190 B.C.E.) 735 VI.5 Abu Ja'far Muhammad ibn Musa al-Khwarizmi (800-847) 736 VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170-ca. 1250) 737 VI.7 Girolamo Cardano (1501-1576) 737 VI.8 Rafael Bombelli (1526-after 1572) 737 VI.9 François Viète (1540-1603) 737 VI.10 Simon Stevin (1548-1620) 738 VI.11 René Descartes (1596-1650) 739 VI.12 Pierre Fermat (160?-1665) 740 VI.13 Blaise Pascal (1623-1662) 741 VI.14 Isaac Newton (1642-1727) 742 VI.15 Gottfried Wilhelm Leibniz (1646-1716) 743 VI.16 Brook Taylor (1685-1731) 745 VI.17 Christian Goldbach (1690-1764) 745 VI.18 The Be
rn
oullis (fl. 18th century) 745 VI.19 Leonhard Euler (1707-1783) 747 VI.20 Jean Le Rond d'Alembert (1717-1783) 749 VI.21 Edward Waring (ca. 1735-1798) 750 VI.22 Joseph Louis Lagrange (1736-1813) 751 VI.23 Pierre-Simon Laplace (1749-1827) 752 VI.24 Adrien-Marie Legendre (1752-1833) 754 VI.25 Jean-Baptiste Joseph Fourier (1768-1830) 755 VI.26 Carl Friedrich Gauss (1777-1855) 755 VI.27 Siméon-Denis Poisson (1781-1840) 757 VI.28 Be
rn
ard Bolzano (1781-1848) 757 VI.29 Augustin-Louis Cauchy (1789-1857) 758 VI.30 August Ferdinand Möbius (1790-1868) 759 VI.31 Nicolai Ivanovich Lobachevskii (1792-1856) 759 VI.32 George Green (1793-1841) 760 VI.33 Niels Henrik Abel (1802-1829) 760 VI.34 János Bolyai (1802-1860) 762 VI.35 Carl Gustav Jacob Jacobi (1804-1851) 762 VI.36 Peter Gustav Lejeune Dirichlet (1805-1859) 764 VI.37 William Rowan Hamilton (1805-1865) 765 VI.38 Augustus De Morgan (1806-1871) 765 VI.39 Joseph Liouville (1809-1882) 766 VI.40 Eduard K
um
mer (1810-1893) 767 VI.41 Évariste Galois (1811-1832) 767 VI.42 James Joseph Sylvester (1814-1897) 768 VI.43 George Boole (1815-1864) 769 VI.44 Karl Weierstrass (1815-1897) 770 VI.45 Pafnuty Chebyshev (1821-1894) 771 VI.46 Arthur Cayley (1821-1895) 772 VI.47 Charles Hermite (1822-1901) 773 VI.48 Leopold Kronecker (1823-1891) 773 VI.49 Georg Friedrich Be
rn
hard Riemann (1826-1866) 774 VI.50 Julius Wilhelm Richard Dedekind (1831-1916) 776 VI.51 Émile Léonard Mathieu (1835-1890) 776 VI.52 Camille Jordan (1838-1922) 777 VI.53 Sophus Lie (1842-1899) 777 VI.54 Georg C
ant
or (1845-1918) 778 VI.55 William Kingdon Clifford (1845-1879) 780 VI.56 Gottlob Frege (1848-1925) 780 VI.57 Christian Felix Klein (1849-1925) 782 VI.58 Ferdinand Georg Frobenius (1849-1917) 783 VI.59 Sofya (Sonya) Kovalevskaya (1850-1891) 784 VI.60 William Bu
rn
side (1852-1927) 785 VI.61 Jules Henri Poincaré (1854-1912) 785 [Illustrat
ion
credit: Portrait courtesy of Henri Poincaré Archives (CNRS,
UM
R 7117, Nancy)] VI.62 Giuseppe Peano (1858-1932) 787 VI.63 David Hilbert (1862-1943) 788 VI.64 Hermann Minkowski (1864-1909) 789 VI.65 Jac
qu
es Hadamard (1865-1963) 790 VI.66 Ivar Fredholm (1866-1927) 791 VI.67 Charles-Jean de la Vallée Poussin (1866-1962) 792 VI.68 Felix Hausdorff (1868-1942) 792 VI.69 Élie Joseph Cartan (1869-1951) 794 VI.70 Emile Borel (1871-1956) 795 VI.71 Bertrand Arthur William Russell (1872-1970) 795 VI.72 Henri Lebesgue (1875-1941) 796 VI.73 Godfrey Harold Hardy (1877-1947) 797 VI.74 Frigyes (Frédéric) Riesz (1880-1956) 798 VI.75 Luitzen Egbertus Jan Brouwer (1881-1966) 799 VI.76 Emmy Noether (1882-1935) 800 VI.77 Wac?aw Sierpinski (1882-1969) 801 VI.78 George Birkhoff (1884-1944) 802 VI.79 John Edensor Littlewood (1885-1977) 803 VI.80 Hermann Weyl (1885-1955) 805 VI.81 Thoralf Skolem (1887-1963) 806 VI.82 Srinivasa Ramanujan (1887-1920) 807 VI.83 Richard Cour
ant
(1888-1972) 808 VI.84 Stefan Banach (1892-1945) 809 VI.85 Norbert Wiener (1894-1964) 811 VI.86 Emil Artin (1898-1962) 812 VI.87 Alfred Tarski (1901-1983) 813 VI.88 Andrei Nikolaevich Kolmogorov (1903-1987) 814 VI.89 Alonzo Church (1903-1995) 816 VI.90 William Vallance Douglas Hodge (1903-1975) 816 VI.91 John von Ne
um
ann (1903-1957) 817 VI.92 Kurt Gödel (1906-1978) 819 VI.93 André Weil (1906-1998) 819 VI.94 Alan Turing (1912-1954) 821 VI.95 Abraham Robinson (1918-1974) 822 VI.96 Nicolas Bourbaki (1935-) 823 Part VII The Influence of Mathematics VII.1 Mathematics and Chemistry 827 VII.2 Mathematical Biology 837 VII.3 Wavelets and Applicat
ion
s 848 VII.4 The Mathematics of Traffic in Networks 862 VII.5 The Mathematics of Algorithm Design 871 VII.6 Reliable Transmiss
ion
of Informat
ion
878 VII.7 Mathematics and Cryptography 887 VII.8 Mathematics and Economic Reasoning 895 VII.9 The Mathematics of Money 910 VII.10 Mathematical Statistics 916 VII.11 Mathematics and Medical Statistics 921 VII.12 Analysis, Mathematical and Philosophical 928 VII.13 Mathematics and Music 935 VII.14 Mathematics and Art 944 Part VIII Final Perspectives VIII.1 The Art of Problem Solving 955 VIII.2 "Why Mathematics?" You Might Ask 966 VIII.3 The Ubi
qu
ity of Mathematics 977 VIII.4 N
um
eracy 983 VIII.5 Mathematics: An Experimental Science 991 VIII.6 Advice to a Young Mathematician 1000 VIII.7 A Chronology of Mathematical Events 1010 Index 1015
Michele Maggiore《A
Mode
rn
Int
roduct
ion
to
Qu
ant
um
Field
Theory
》(米歇尔·马焦雷《量子场论现代导引》)中文目录
序言 记号 第一章 导引 1.1 概览 1.2 高能物理学中的典型尺度 进一步阅读 练习 第二章 量子场论(QFT)中的洛伦兹对称性与庞加莱对称性 2.1 李(Lie)群 2.2 洛伦兹(Lorentz)群 2.3 洛伦兹代数 2.4 张量表示 2.4.1 SO(3) 下的洛伦兹张量表示的分解 2.5 旋量表示 2.5.1 非相对论性量子力学中的旋量 2.5.2 相对论性理论中的旋量 2.6 场表示 2.6.1 标量场 ...
Michio Kaku《
Qu
ant
um
Field
Theory
: A
Mode
rn
Int
roduct
ion
》(加来道雄《量子场论:现代导引》)中文目录
前言 致谢 第一部分 量子场与重正化 第一章 为什么需要量子场论? 1.1 历史展望 1.2 强相互作用 1.3 弱相互作用 1.4 引力作用 1.5 规范革命 1.6 统一 1.7 作用量原理 1.8 从一次量子化到二次量子化 1.9 诺特(Noether)定理 1.10 练习 第二章 对称与群论 2.1 群论基础 2.2 SO(2) 2.3 SO(2) 与 U(1) 的表示 2.4 SO(3) 与 SU(2) 的表示 2.5 SO(N)
Franz Mandl, Graham Shaw《
Qu
ant
um
Field
Theory
(2nd)》(弗兰兹·曼德尔, 格雷厄姆·肖《量子场论(第二版)》)中文目录
序言 说明 第一章 光子和电磁场 1.1 粒子和场 1.2 不存在电荷的电磁场 1.2.1 经典场 1.2.2 谐振子 1.2.3 量子化辐射场 1.3 电偶极子相互作用 1.4 存在电荷的电磁场 1.4.1 经典电动力学 1.4.2 量子电动力学 1.4.3 原子中的辐射跃迁 1.4.4 Thomson(汤姆孙) 散射 1.5 附录:Schr...
下载资源悬赏专区
13,655
社区成员
12,584,605
社区内容
发帖
与我相关
我的任务
下载资源悬赏专区
CSDN 下载资源悬赏专区
复制链接
扫一扫
分享
社区描述
CSDN 下载资源悬赏专区
其他
技术论坛(原bbs)
社区管理员
加入社区
获取链接或二维码
近7日
近30日
至今
加载中
查看更多榜单
社区公告
暂无公告
试试用AI创作助手写篇文章吧
+ 用AI写文章