深度强化学习DQN算法python源码.zip下载

weixin_39822095 2023-11-18 23:00:21
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 5.作者介绍:某大厂资深算法工程师,从事Matlab算法仿真工作10年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。 , 相关下载链接:https://download.csdn.net/download/m0_60703264/88499061?utm_source=bbsseo
...全文
2 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
【资源说明】 基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip 基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
【资源说明】 基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip 要求 python 3.5 Tensorflow 1.14.0 ROS Melodic 使用步骤 因为有未知问题,需要把小车在gazebo中的启动,与tesorflow强化学习分开成两个文件夹,合在一起会报错 ## 1.创建虚拟环境 NDDDQN ## 2.安装tensorflow ``` pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` ## 3.在两个工作空间进行编译 在catkin_ws和catkin_ws1分别编译: ``` catkin_make --cmake-args \ -DCMAKE_BUILD_TYPE=Release \ -DPYTHON_EXECUTABLE=/usr/bin/python3 \ -DPYTHON_INCLUDE_DIR=/usr/include/python3.6m \ -DPYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.6m.so ``` ## 4.运行 首先在运行小车的catkin_ws1文件夹中: ``` cd catkin_ws1 source devel/setup.sh roslaunch pioneer_utils xxx ``` xxx对应运行环境: ``` bizhang.launch 静态避障 ​ daohang.launch 静态导航 ​ dongtai.launch 动态导航 ​ keyboard_teleop.launch 键盘控制 ``` 然后在运行强化学习的文件夹catkin_ws中: ``` conda activate NDDDQN cd catkin_ws source devel/setup.sh cd src/Tensorflow/xxx python main.py ``` xxx对应运行算法: ``` DQN-bizhang 静态避障-DQN ​ DDQN-bizhang 静态避障-DDQNDQN-Dueling-bizhang 静态避障-Dueling-DQN ​ DDQN-Dueling-bizhang 静态避障-Dueling-DDQN ​ NDDQN-Dueling-bizhang 静态避障-Dueling-NDDQN ​ Beta-DDQN-Dueling-bizhang 静态避障-Beta-Dueling-DDQN ​ Empty-Navigation 静态导航-Dueling-NDDQN ​ separate-Empty-Navigation 静态导航-separate-Dueling-NDDQN ​ Navigation-DDQN 静态导航-DDQN ​ people-Navigation 动态导航-Dueling-NDDQN ``` 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
【资源介绍】 基于DQN深度强化学习解决三维在线装箱问题python源码+项目说明.zip 问题描述 物流公司在流通过程中,需要将打包完毕的箱子装入到一个货车的车厢中,为了提高物流效率,需要将车厢尽量填满,显然,车厢如果能被100%填满是最优的,但通常认为,车厢能够填满85%,可认为装箱是比较优化的。 设车厢为长方形,其长宽高分别为L,W,H;共有n个箱子,箱子也为长方形,第i个箱子的长宽高为li,wi,hi(n个箱子的体积总和是要远远大于车厢的体积),做以下假设和要求: 1. 长方形的车厢共有8个角,并设靠近驾驶室并位于下端的一个角的坐标为(0,0,0),车厢共6个面,其中长的4个面,以及靠近驾驶室的面是封闭的,只有一个面是开着的,用于工人搬运箱子; 2. 需要计算出每个箱子在车厢中的坐标,即每个箱子摆放后,其和车厢坐标为(0,0,0)的角相对应的角在车厢中的坐标,并计算车厢的填充率。 运行环境 主机 |内存 | 显卡 | IDE | Python | torch -----|------|------|-----|--------|----- CPU:12th Gen Intel(R) Core (TM) i7-12700H 2.30 GHz | 6GB RAM | NVIDIA GEFORCE RTX 3050 | Pycharm2022.2.1 | python3.8 | 1.13.0 思路 (1)箱子到来后,根据车厢的实际空间情况,按照策略选择放置点; (2)当摆放箱子时,以6种姿态摆放,并对其进行评估,使用评估值最高的姿态将箱子摆放在选中的角点上; (3)重复以上步骤,直到摆放完毕。 建立模型 在车厢内部设置坐标系,靠近驾驶室并位于下端的一个角的坐标为(0,0,0),相交于原点的车厢长边、宽边和高边分别为x轴,y轴和z轴方向,L、W、H分别为车厢的长、宽、高。箱子具有六种摆放姿态,分别以箱子的长宽、长高、宽高平面为底,旋转90°可以得到另外三种摆放姿态。 核心 # 箱子放置策略 本算法将角点作为车厢内部空间中箱子的摆放位置,每次放入新箱子后搜索新生成的角点,当向车厢中放入第一个箱子时,假设车厢中只有原点一个角点,当一个箱子放入后,会产生新的角点,再放置箱子后,又会产生新的角点。 建立箱子可放置点列表,表示箱子i到来时,车厢内部所有可选的摆放位置,在放置新箱子后更新可放置点列表,并记录已放置箱子到车厢顶部距离,用于后续的奖励函数。 # DQN (1)设置一些超参数,包括ε-greedy使用的ε,折扣因子γ,目标网络更新频率,经验池容量等。 (2)由于给定的箱子数据较少,为了增加模型训练数据数量,将给定的箱子数据打乱,以随机的形式生成并保存,作为训练数据,训练网络模型。 (3)奖励函数 使用x-y平面中两个最大剩余矩形面积(如下图)之和与箱子到车厢顶部的距离作为奖励值R,奖励函数表示如下 【说明】 该项目是个人毕设项目,答辩评审分达到95分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。 该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 欢迎下载交流,互相学习,共同进步!

12,453

社区成员

发帖
与我相关
我的任务
社区描述
CSDN 下载资源悬赏专区
其他 技术论坛(原bbs)
社区管理员
  • 下载资源悬赏专区社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧