基于Hadoop的异构网络协同过滤推荐算法设计.docx下载

weixin_39820835 2023-11-21 19:30:25
【原创学士学位毕业论文,未入库可过查重】万字原创,基于Hadoop架构类的学位毕业论文,适合本科专科毕业生使用。 内容概要: 本论文以Hadoop架构为基础,深入研究了其在大数据处理和分析方面的应用。通过对Hadoop的原理和相关技术的分析,探讨了其在数据存储、计算和处理等方面的优势和局限性。同时,通过实际案例研究,展示了Hadoop在实际场景中的应用和效果。 适用人群: 本论文适合计算机科学与技术、软件工程等相关专业的本科专科毕业生,以及对大数据处理和分析感兴趣的学习者。 使用场景及目标: 本论文旨在帮助读者深入了解Hadoop架构的原理和应用,以及在大数据处理和分析方面的优势。读者可以通过学习本论文,掌握Hadoop的基本概念、工作原理和核心组件,了解其在实际场景中的应用,并能够根据需求进行相应的配置和优化。 其他说明: 本论文采用了系统化的研究方法,包括文献综述、理论分析和实证研究等,以确保论文的科学性和可靠性。同时,为了保证论文的原创性,采用了严格的查重措施,确保未入库,可通过查重系统。 关键词:Hadoop架构、大数据处理、分布式计算、数据存储、数据分析 , 相关下载链接:https://download.csdn.net/download/No_Name_Cao_Ni_Mei/88508173?utm_source=bbsseo
...全文
2 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
大数据分析平台全文共4页,当前为第1页。大数据分析平台全文共4页,当前为第1页。一、数据分析平台层次解析 大数据分析平台全文共4页,当前为第1页。 大数据分析平台全文共4页,当前为第1页。 大数据分析处理架构图 数据源: 除该种方法之外,还可以分为离线数据、近似实时数据和实时数据。按照图中的分类其实就是说明了数据存储的结构,而特别要说的是流数据,它的核心就是数据的连续性和快速分析性; 计算层: 内存计算中的Spark是UC Berkeley的最新作品,思路是利用集群中的所有内存将要处理的数据加载其中,省掉很多I/O开销和硬盘拖累,从而加快计算。而Impala思想来源于Google Dremel,充分利用分布式的集群和高效存储方式来加快大数据集上的查询速度,这也就是我上面说到的近似实时查询;底层的文件系统当然是HDFS独大,也就是Hadoop的底层存储,现在大数据的技术除了微软系的意外,基本都是HDFS作为底层的存储技术。上层的YARN就是MapReduce的第二版,和在一起就是Hadoop最新版本。基于之上的应用有Hive,Pig Latin,这两个是利用了SQL的思想来查询Hadoop上的数据。 关键: 利用大数据做决策支持。R可以帮你在大数据上做统计分析,利用R语言和框架可以实现很专业的统计分析功能,并且能利用图形的方式展现;而Mahout就是一个集数据挖掘、决策支持等算法于一身的工具,其中包含的都是大数据分析平台全文共4页,当前为第2页。大数据分析平台全文共4页,当前为第2页。基于Hadoop来实现的经典算法,拿这个作为数据分析的核心算法集来参考还是很好的。 大数据分析平台全文共4页,当前为第2页。 大数据分析平台全文共4页,当前为第2页。 如此一个决策支持系统要怎么展现呢?其实这个和数据挖掘过程中的展现一样,无非就是通过表格和图标图形来进行展示,其实一份分类详细、颜色艳丽、数据权威的数据图标报告就是呈现给客户的最好方式!至于用什么工具来实现,有两个是最好的数据展现工具,Tableau和Pentaho,利用他们最为数据展现层绝对是最好的选择。 二、规划的数据平台产品AE(Accelerate Engine) 支持下一代企业计算关键技术的大数据处理平台:包括计算引擎、开发工具、管理工具及数据服务。计算引擎是AE的核心部分,提供支持从多数据源的异构数据进行实时数据集成、提供分布式环境下的消息总线、通过Service Gateway能够与第三方系统进行服务整合访问;设计了一个分布式计算框架,可以处理结构化和非结构化数据,并提供内存计算、规划计算、数据挖掘、流计算等各种企业计算服务。Data Studio包括了数据建模、开发、测试等集成开发环境。管理工具包括了实施、客户化及系统管理类工具。AE平台还可以通过UAP开发者社区提供丰富的数据服务。 AE架构图 大数据分析平台全文共4页,当前为第3页。大数据分析平台全文共4页,当前为第3页。新规划将BAP平台拆分为两部分,底层技术平台发展内存计算和数据处理,上层BI展现端重点发展仪表盘、web和移动设备展现。 大数据分析平台全文共4页,当前为第3页。 大数据分析平台全文共4页,当前为第3页。 两大产品通过数据处理接口和嵌入式应用服务于业务系统。 生态系统图 大数据处理平台担负着为BI系统提供语义层/OLAP引擎等底层技术支撑、BI及ERP系统的性能提升、以及数据挖掘、非结构化数据处理等系列数据整合与处理的解决方案。 具体模块包括: 语义层:为统一的查询建模平台和数据访问接口。除提供标准的查询建模能力外,还有语义驱动、语义规则、语义函数、描述器等等扩展方式,满足不同层面的扩展要求。 OLAP引擎:OLAP引擎提供全面的多维建模与分析能力。多维模型包括维度、层次、级别、属性、指标、计算成员等;同时预置系列分析函数,包括同比/环比/期比/基比等时间序列分析、占比/排名/方差等统计分析、指数回归和线性回归分析等;提供标准的MDX解析与执行,与数据仓库等模块结合,提供针对海量数据的实时分析和处理能力。 大数据分析平台全文共4页,当前为第4页。大数据分析平台全文共4页,当前为第4页。数据集成:能够胜任在大数据量、高并发、多维分析等环境背景下的实时分析。通过实时数据集成(RDI)提供的数据实时复制与DW的列式存储引擎,解决了以往在传统架构模式下,普通行式存储引擎无法实现的业务场景。 大数据分析平台全文共4页,当前为第4页。 大数据分析平台全文共4页,当前为第4页。 数据挖掘:支持运行于分布式文件系统和分布式计算平台之上的分布式数据挖掘算法,具体包括:逻辑斯特回归、朴素贝叶斯分类算法及其分布式实现;K均值、谱聚类算法及其分布式实现;潜在狄利克雷分配语义挖掘算法及其分布式实现;频繁模式挖掘分析算法及其分

13,009

社区成员

发帖
与我相关
我的任务
社区描述
CSDN 下载资源悬赏专区
其他 技术论坛(原bbs)
社区管理员
  • 下载资源悬赏专区社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧