YOLOv8姿态估计实战:训练自己的数据集

bai666ai 2024-03-03 13:14:26

课程名称适应人群
YOLOv8姿态估计实战:训练自己的数据集希望学习YOLOv8关键点检测与姿态估计技术的学员和从业者

YOLOv8 基于先前 YOLO 版本的成功,引入了新功能和改进,进一步提升性能和灵活性。YOLOv8 同时支持目标检测和姿态估计任务。 


本课程以熊猫姿态估计为例,将手把手地教大家使用CVAT标注图像中的关键点和skeleton,并使用YOLOv8训练自己的数据集,完成一个多姿态估计实战项目。  


本课程分别在Windows和Ubuntu系统上做项目实战演示。
包括:安装软件环境、安装PyTorch、安装YOLOv8、使用CVAT标注自己的数据集、数据集格式转换(COCO转YOLO)、准备自己的数据集(自动划分训练集和验证集)、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。 

课程还包括对YOLOv8姿态估计的原理论文解读、网络输出和损失函数、以及YOLOv8姿态估计相关代码解析。

检测效果

课程内容

 

...全文
1050 2 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
2 条回复
切换为时间正序
请发表友善的回复…
发表回复
hx1507870322 2024-03-23
  • 打赏
  • 举报
回复

代码解析的MD文档能分享一下吗

hx1507870322 2024-03-20
  • 打赏
  • 举报
回复

白老师 能不能发一下课程中的人体姿态估计的两篇文章pdf

智慧农业基于YOLOv8的香蕉成熟度分级识别系统源码(部署教程+训练好的模型+各项评估指标曲线).zip 平均准确率:0.905 类别:very-ripe、immature、mid-ripe 【资源介绍】 1、ultralytics-main ultralytics-main为YOLOv8源代码,里面涵盖基于yolov8分类、目标检测额、姿态估计、图像分割四部分代码,我们使用的是detect部分,也就是目标检测代码 2、搭建环境 安装anaconda 和 pycharm windows系统、mac系统、Linux系统都适配 在anaconda中新建一个新的envs虚拟空间(可以参考博客来),命令窗口执行:conda create -n YOLOv8 python==3.8 创建完YOLOv8-GUI虚拟空间后,命令窗口执行:source activate YOLOv8 激活虚拟空间 然后就在YOLOv8虚拟空间内安装requirements.txt中的所有安装包,命令窗口执行:pip install -r requirements.txt 使用清华源安装更快 3、训练模型过程 进入到\ultralytics-main\ultralytics\yolo\v8\detect\文件夹下,datasets即为我们需要准备好的数据集训练其他模型同理。 data文件夹下的bicycle.yaml文件为数据集配置文件,该文件为本人训练自行车检测模型时创建,训练其他模型,可自行创建。博文有介绍https://blog.csdn.net/DeepLearning_?spm=1011.2415.3001.5343 train.py中238行,修改为data = cfg.data or './bicycle.yaml' # or yolo.ClassificationDataset("mnist") 237行修改自己使用的预训练模型 若自己有显卡,修改239行,如我有四张显卡,即改成args = dict(model=model, data=data, device=”0,1,2,3“) 以上配置完成后运行train.py开始训练模型,训练完毕后会在runs/detect/文件夹下生成train*文件夹,里面包含模型和评估指标等 4、推理测试 训练好模型,打开predict.py,修改87行,model = cfg.model or 'yolov8n.pt',把yolov8n.pt换成我们刚才训练完生成的模型路径(在\ultralytics-main\ultralytics\yolo\v8\detect\runs\detect文件夹下),待测试的图片或者视频存放于ultralytics\ultralytics\assets文件夹, 运行predict.py即可,检测结果会在runs/detect/train文件夹下生成。

2

社区成员

发帖
与我相关
我的任务
社区描述
人工智能技术专家
社区管理员
  • bai666ai
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧