4,300
社区成员
发帖
与我相关
我的任务
分享
import numpy as np import pandas as pd from sklearn import datasets from sklearn.linear_model import LinearRegression #houseprice= pd.read_csv('boston_housing.csv') # 指定要读取的CSV文件路径 csv_file = 'boston_housing.csv' # 使用np.genfromtxt函数读取CSV文件并将其转换为NumPy数组 housedata = np.genfromtxt(csv_file, delimiter=',') X = housedata y = housedata[:,13] feature_names = np.array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']) feature_names #y.shape index = np.arange(506) np.random.shuffle(index) index train_index = index [:405] #train_index.shape test_index = index [405:] #test_index.shape X_train = X[train_index] y_train = y[train_index] X_train.shape X_test = X[test_index] y_test = y[test_index] display(X_test.shape,y_test.shape) #np.set_printoptions(suppress = True) model = LinearRegression(fit_intercept= True) model.fit(X_train,y_train) display(model.coef_,model.intercept_) y_train index #X_train[100] #θ = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y).round(4) #print('二元斜率截距分别是',w,b) #print('二通过正规方程球的结果',θ.reshape(-1)) #display(houseprice)
运行后
array([-0., -0., -0., 0., 0., 0., -0., -0., -0., -0., -0., -0., -0., 1.])
1.4921397450962104e-13
14个回归系数和截距都为0,咋回事,来个大神救我。