533
社区成员




大模型通常指的是机器学习或人工智能领域中参数数量巨大、拥有庞大计算能力和参数规模的模型。这些模型利用大量数据进行训练,并且拥有数十亿甚至数千亿个参数。大模型的出现和发展得益于增长的数据量、计算能力的提升以及算法优化等因素。这些模型在各种任务中展现出惊人的性能,比如自然语言处理、计算机视觉、语音识别等。这种模型通常采用深度神经网络结构,如 Transformer
、BERT
、GPT
( Generative Pre-trained Transformer )等。
大模型的优势在于其能够捕捉和理解数据中更为复杂、抽象的特征和关系。通过大规模参数的学习,它们可以提高在各种任务上的泛化能力,并在未经过大量特定领域数据训练的情况下实现较好的表现。然而,大模型也面临着一些挑战,比如巨大的计算资源需求、高昂的训练成本、对大规模数据的依赖以及模型的可解释性等问题。因此,大模型的应用和发展也需要在性能、成本和道德等多个方面进行权衡和考量。
InternLM
是一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖。通过单一的代码库,它支持在拥有数千个 GPU
的大型集群上进行预训练,并在单个 GPU
上进行微调,同时实现了卓越的性能优化。在 1024
个 GPU
上训练时,InternLM
可以实现近 90%
的加速效率。
基于 InternLM
训练框架,上海人工智能实验室已经发布了两个开源的预训练模型:InternLM-7B
和 InternLM-20B
。
Lagent
是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。通过 Lagent
框架可以更好的发挥 InternLM
的全部性能。
浦语·灵笔是基于书生·浦语大语言模型研发的视觉-语言大模型,提供出色的图文理解和创作能力,结合了视觉和语言的先进技术,能够实现图像到文本、文本到图像的双向转换。使用浦语·灵笔大模型可以轻松的创作一篇图文推文,也能够轻松识别一张图片中的物体,并生成对应的文本描述。
首先,打开 Intern Studio
界面,点击 创建开发机 配置开发机系统。
填写 开发机名称
后,点击 选择镜像 使用 Cuda11.7-conda
镜像,然后在资源配置中,使用 10% A100 * 1
的选项,然后立即创建开发机器。
点击 进入开发机
选项。
进入开发机后,在 terminal
中输入环境配置命令 (配置环境时间较长,需耐心等待):
studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案
# conda create -n demo python==3.10 -y
# conda activate demo
# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
配置完成后,进入到新创建的 conda
环境之中:
conda activate demo
输入以下命令,完成环境包的安装:
pip install huggingface-hub==0.17.3
pip install transformers==4.34
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2
pip install matplotlib==3.8.3
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99
InternLM2-Chat-1.8B
模型按路径创建文件夹,并进入到对应文件目录中:
mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo
通过左侧文件夹栏目,双击进入 demo
文件夹。
双击打开 /root/demo/download_mini.py
文件,复制以下代码:
import os
from modelscope.hub.snapshot_download import snapshot_download
# 创建保存模型目录
os.system("mkdir /root/models")
# save_dir是模型保存到本地的目录
save_dir="/root/models"
snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b",
cache_dir=save_dir,
revision='v1.1.0')
执行命令,下载模型参数文件:
python /root/demo/download_mini.py
双击打开 /root/demo/cli_demo.py
文件,复制以下代码:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("\nUser >>> ")
input_text = input_text.replace(' ', '')
if input_text == "exit":
break
length = 0
for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
print(response[length:], flush=True, end="")
length = len(response)
输入命令,执行 Demo 程序:
conda activate demo
python /root/demo/cli_demo.py
等待模型加载完成,键入内容示例:
请创作一个 300 字的小故事
效果如下:
八戒-Chat-1.8B
模型八戒-Chat-1.8B
、Chat-嬛嬛-1.8B
、Mini-Horo-巧耳
(实战营优秀作品)八戒-Chat-1.8B
、Chat-嬛嬛-1.8B
、Mini-Horo-巧耳
均是在第一期实战营中运用 InternLM2-Chat-1.8B
模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B
是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou
子项目之一,八戒-Chat-1.8B
能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。
当然,同学们也可以参考其他优秀的实战营项目,具体模型链接如下:
🍏那么,开始实验!!!
运行环境命令:
conda activate demo
使用 git
命令来获得仓库内的 Demo 文件:
cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial
在 Web IDE
中执行 bajie_download.py
:
python /root/Tutorial/helloworld/bajie_download.py
待程序下载完成后,输入运行命令:
streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006
待程序运行的同时,对端口环境配置本地 PowerShell
。使用快捷键组合 Windows + R
(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。
打开 PowerShell 后,先查询端口,再根据端口键入命令:
# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 39***
再复制下方的密码,输入到 password
中,直接回车。
打开 http://127.0.0.1:6006 后,等待加载完成即可进行对话,键入内容示例如下:
你好,请自我介绍
效果图如下:
Lagent
运行 InternLM2-Chat-7B
模型(开启 30% A100 权限后才可开启此章节)Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。
Lagent 的特性总结如下:
打开 Intern Studio
界面,调节配置(必须在开发机关闭的条件下进行):
重新开启开发机,输入命令,开启 conda 环境:
conda activate demo
打开文件子路径
cd /root/demo
使用 git 命令下载 Lagent 相关的代码库:
git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装
Lagent
运行 InternLM2-Chat-7B
模型为内核的智能体Intern Studio
在 share 文件中预留了实践章节所需要的所有基础模型,包括 InternLM2-Chat-7b
、InternLM2-Chat-1.8b
等等。我们可以在后期任务中使用 share
文档中包含的资源,但是在本章节,为了能让大家了解各类平台使用方法,还是推荐同学们按照提示步骤进行实验。
打开 lagent 路径:
cd /root/demo/lagent
在 terminal 中输入指令,构造软链接快捷访问方式:
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b
打开 lagent
路径下 examples/internlm2_agent_web_demo_hf.py
文件,并修改对应位置 (71行左右) 代码:
# 其他代码...
value='/root/models/internlm2-chat-7b'
# 其他代码...
输入运行命令 - 点开 6006 链接后,大约需要 5 分钟完成模型加载:
streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006
待程序运行的同时,对本地端口环境配置本地 PowerShell
。使用快捷键组合 Windows + R
(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):
# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 39***
再复制下方的密码,输入到 password
中,直接回车。
打开 http://127.0.0.1:6006 后,(会有较长的加载时间)勾上数据分析,其他的选项不要选择,进行计算方面的 Demo 对话,即完成本章节实战。键入内容示例:
请解方程 2*X=1360 之中 X 的结果