基于上下文特征,使用机器学习以及深度学习的方法对复杂长句进行切分下载

weixin_39821746 2024-05-24 23:00:33
深度学习(也称为深度结构化学习或分层学习)是基于人工神经网络的更广泛的机器学习方法族的一部分。学习可以是有监督的、半监督的或无监督的。[1][2][3] 深度学习架构,例如深度神经网络、深度信念网络、循环神经网络和卷积神经网络,已经被应用于包括计算机视觉、语音识别、自然语言处理、音频识别、社交网络过滤、机器翻译、生物信息学、药物设计、医学图像分析、材料检查和棋盘游戏程序在内的领域,在这些领域中,它们的成果可与人类专家媲美,并且在某些情况下胜过人类专家。[4][5][6] 神经网络受到生物系统中信息处理和分布式通信节点的启发。人工神经网络与生物大脑有各种不同。具体而言,神经网络往往是静态和象征性的,而大多数生物的大脑是动态(可塑)和模拟的大多数现代的深度学习模型基于人工神经网络,特别是卷积神经网络(CNN),尽管它们也可以包括命题公式或在深度生成模型中逐层组织的潜变量,例如深度信念网络和深度玻尔兹曼机中的节点。[11] 在深度学习中,每一级学习将其输入数据转换成稍微抽象和复合的表示。在图像识别应用中,原始输入可以是像素矩阵;第一代表层可以提取像素并编码边缘;第二层可以组成和编码边缘 , 相关下载链接:https://download.csdn.net/download/qq_51320133/89288122?utm_source=bbsseo
...全文
8 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
深度学习(也称为深度结构化学习或分层学习)是基于人工神经网络的更广泛的机器学习方法族的一部分。学习可以是有监督的、半监督的或无监督的。[1][2][3] 深度学习架构,例如深度神经网络、深度信念网络、循环神经网络和卷积神经网络,已经被应用于包括计算机视觉、语音识别、自然语言处理、音频识别、社交网络过滤、机器翻译、生物信息学、药物设计、医学图像分析、材料检查和棋盘游戏程序在内的领域,在这些领域中,它们的成果可与人类专家媲美,并且在某些情况下胜过人类专家。[4][5][6] 神经网络受到生物系统中信息处理和分布式通信节点的启发。人工神经网络与生物大脑有各种不同。具体而言,神经网络往往是静态和象征性的,而大多数生物的大脑是动态(可塑)和模拟的大多数现代的深度学习模型基于人工神经网络,特别是卷积神经网络(CNN),尽管它们也可以包括命题公式或在深度生成模型中逐层组织的潜变量,例如深度信念网络和深度玻尔兹曼机中的节点。[11] 在深度学习中,每一级学习将其输入数据转换成稍微抽象和复合的表示。在图像识别应用中,原始输入可以是像素矩阵;第一代表层可以提取像素并编码边缘;第二层可以组成和编码边缘

13,655

社区成员

发帖
与我相关
我的任务
社区描述
CSDN 下载资源悬赏专区
其他 技术论坛(原bbs)
社区管理员
  • 下载资源悬赏专区社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧