4
社区成员
发帖
与我相关
我的任务
分享|
学习阶段 |
模块 |
知识点(含2024-2025最新算法) |
学习网站(含有效网址) |
GitHub项目地址 |
学习视频网站(含有效网址) |
|---|---|---|---|---|---|
|
基础预备阶段(1-2个月) |
数学基础 |
线性代数:向量、矩阵运算、特征值与特征向量、PCA降维原理 |
3Blue1Brown官网(https://www.3blue1brown.com/)、Khan Academy(https://www.khanacademy.org/) |
https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra |
B站《线性代数的本质》(https://www.bilibili.com/video/BV1ys411472E/)、慕课网线性代数基础课程(https://www.imooc.com/course/list?c=math&type=2) |
|
概率论与数理统计:概率分布、期望与方差、极大似然估计、贝叶斯定理 |
Khan Academy(https://www.khanacademy.org/)、统计之都(https://cosx.org/) |
https://github.com/rossant/awesome-math#probability--statistics |
B站茆诗松《概率论与数理统计》讲解(https://www.bilibili.com/search?keyword=茆诗松%20概率论与数理统计)、网易云课堂概率统计课程(https://study.163.com/course/introduction.htm?courseId=1003590004) | ||
|
微积分:一元函数微分与积分、多元函数偏导、梯度下降的数学原理 |
3Blue1Brown官网(https://www.3blue1brown.com/)、Khan Academy(https://www.khanacademy.org/) |
https://github.com/rossant/awesome-math#calculus--analysis |
B站《微积分的本质》系列(https://www.bilibili.com/search?keyword=微积分的本质%203Blue1Brown)、中国大学MOOC微积分课程(https://www.icourse163.org/course/search.htm?keyword=%E5%BE%AE%E7%A7%AF%E5%88%86) | ||
|
数学基础综合巩固 |
MIT OpenCourseWare(https://ocw.mit.edu/)、中国大学MOOC(https://www.icourse163.org/) |
https://github.com/ashishpatel26/Mathematics-for-Machine-Learning |
MIT公开课:数学基础(机器学习方向)(https://ocw.mit.edu/courses/mathematics/)、B站数学建模与AI数学基础课程(https://www.bilibili.com/search?keyword=AI%20%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A1%80) | ||
|
编程基础 |
Python核心语法:变量、数据类型、循环与条件判断、函数、类与面向对象编程 |
Python官方文档(https://www.python.org/doc/)、菜鸟教程Python专区(https://www.runoob.com/python/python-tutorial.html) |
https://github.com/TheAlgorithms/Python |
B站尚硅谷Python基础教程(https://www.bilibili.com/video/BV1eW411t7rd/)、慕课网Python入门到精通(https://www.imooc.com/course/list?c=python) | |
|
AI常用库:NumPy、Pandas、Matplotlib/Seaborn |
NumPy官方文档(https://numpy.org/doc/)、Pandas官方文档(https://pandas.pydata.org/docs/) |
https://github.com/justmarkham/pandas-videos、https://github.com/matplotlib/matplotlib |
B站《Python数据科学手册》配套讲解(https://www.bilibili.com/search?keyword=Python%E6%95%B0%E6%8D%AE%E7%A7%91%E5%AD%A6%E6%89%8B%E5%86%8C)、慕课网NumPy&Pandas实战课程(https://www.imooc.com/course/list?c=data&keyword=NumPy%20Pandas) | ||
|
编程实战:NumPy矩阵运算、Pandas数据处理与可视化 |
Kaggle Learn(https://www.kaggle.com/learn)、数据科学社区KDnuggets(https://www.kdnuggets.com/) |
https://github.com/kevinushey/Kaggle-Titanic |
B站泰坦尼克号数据集分析实战(https://www.bilibili.com/search?keyword=%E6%B3%B0%E5%9D%A6%E5%B0%BC%E5%85%8B%E5%8F%B7%20%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90)、Kaggle官方教程视频(YouTube:https://www.youtube.com/c/Kaggle) | ||
|
AI认知入门 |
核心概念:人工智能、机器学习、深度学习的定义与区别 |
人工智能学会官网(https://www.caai.cn/)、机器之心资讯网(https://www.jiqizhixin.com/)、国家高等教育智慧教育平台(https://higher.smartedu.cn/) |
https://github.com/owainlewis/awesome-artificial-intelligence |
B站《人工智能发展简史》(https://www.bilibili.com/search?keyword=%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%8F%91%E5%B1%95%E7%AE%80%E5%8F%B2)、国家高等教育智慧教育平台AI入门课程(https://higher.smartedu.cn/course/677c619ab60b1822c5e5af06) | |
|
发展历程:关键里程碑、主流技术流派、2024-2025 AI技术突破(多模态、AGI雏形) |
AI Timeline(https://aitimeline.stanford.edu/)、新智元资讯网(https://www.zhidx.com/)、DAMO开发者矩阵(https://damodev.csdn.net/) |
https://github.com/google-research/google-research#ai-history |
B站李开复《人工智能》讲座(https://www.bilibili.com/search?keyword=%E6%9D%8E%E5%BC%80%E5%A4%8D%20%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD)、TED演讲:AI的过去与未来(https://www.ted.com/talks?sort=newest&topics=artificial-intelligence) | ||
|
应用场景:图像识别、NLP、推荐系统、AIGC、AI for Science等典型案例 |
AI前线(https://www.infoq.cn/theme/18)、极客公园AI专区(https://www.geekpark.net/topic/ai)、博客园AI学习攻略(https://www.cnblogs.com/yxqai/articles/19367722) |
https://github.com/zhpmatrix/awesome-ai-applications |
B站AI应用案例合集(https://www.bilibili.com/search?keyword=AI%E5%BA%94%E7%94%A8%E6%A1%88%E4%BE%8B)、腾讯课堂AI行业应用解析(https://ke.qq.com/course/list?mt=1001&st=2048&tt=3072) | ||
|
2024-2025前沿趋势认知:多模态大模型、混合专家模型(MoE)、边缘AI |
DAMO开发者矩阵(https://damodev.csdn.net/)、Hugging Face官网(https://huggingface.co/) |
https://github.com/ray-project/ray/tree/master/python/ray/serve/examples/moe |
B站2025 AI前沿趋势解读(https://www.bilibili.com/search?keyword=2025%20AI%E5%89%8D%E6%B2%BF%E8%B6%8B%E5%8A%BF)、慕课网多模态大模型入门(https://www.imooc.com/course/list?c=data&keyword=%E5%A4%9A%E6%A8%A1%E6%80%81%E5%A4%A7%E6%A8%A1%E5%9E%8B) | ||
|
核心基础阶段:机器学习(2-3个月) |
机器学习基础概念 |
监督学习、无监督学习等定义与适用场景 |
吴恩达Coursera课程平台(https://www.coursera.org/learn/machine-learning/)、机器学习社区Machine Learning Mastery(https://machinelearningmastery.com/) |
https://github.com/josephmisiti/awesome-machine-learning |
B站吴恩达机器学习课程(https://www.bilibili.com/search?keyword=%E5%90%B4%E6%81%A9%E8%BE%BE%20%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0)、Coursera吴恩达机器学习视频(https://www.coursera.org/learn/machine-learning/) |
|
数据集划分:训练集、验证集、测试集的作用与划分方法 |
Scikit-learn官方文档(https://scikit-learn.org/stable/)、Kaggle Learn(https://www.kaggle.com/learn) |
https://github.com/amueller/introduction_to_ml_with_python |
B站《机器学习数据预处理》教程(https://www.bilibili.com/search?keyword=%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%20%E6%95%B0%E6%8D%AE%E9%A2%84%E5%A4%84%E7%90%86)、慕课网数据集划分与交叉验证课程(https://www.imooc.com/course/list?c=data&keyword=%E6%95%B0%E6%8D%AE%E9%9B%86%E5%88%92%E5%88%86) | ||
|
评估指标:准确率、精确率、召回率等分类/回归指标 |
Towards Data Science(https://towardsdatascience.com/)、Scikit-learn官方文档评估指标专区(https://scikit-learn.org/stable/modules/model_evaluation.html) |
https://github.com/yandexdataschool/roc_comparison |
B站机器学习评估指标详解(https://www.bilibili.com/search?keyword=%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%20%E8%AF%84%E4%BC%B0%E6%8C%87%E6%A0%87)、网易云课堂模型评估与优化课程(https://study.163.com/course/introduction.htm?courseId=1210063806) | ||
|
过拟合与欠拟合:成因与解决方法 |
Machine Learning Mastery(https://machinelearningmastery.com/)、统计学习方法官网(https://www.stat-learning.com/) |
https://github.com/rasbt/python-machine-learning-book-3rd-edition |
B站过拟合与欠拟合解决方案实战(https://www.bilibili.com/search?keyword=%E8%BF%87%E6%8B%9F%E5%90%88%20%E6%AC%A0%E6%8B%9F%E5%90%88)、Coursera模型正则化专题视频(https://www.coursera.org/learn/machine-learning/supplement/XXWX8/regularization-intuition) | ||
|
经典监督学习算法 |
线性模型:线性回归、逻辑回归 |
Scikit-learn官方文档(https://scikit-learn.org/stable/)、统计学习方法官网(https://www.stat-learning.com/) |
https://github.com/trekhleb/homemade-machine-learning/tree/master/homemade/linear_regression |
B站线性回归与逻辑回归实战(https://www.bilibili.com/search?keyword=%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%20%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92)、慕课网Scikit-learn线性模型课程(https://www.imooc.com/course/list?c=data&keyword=Scikit-learn%20%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B) | |
|
树模型与集成学习:决策树、随机森林、XGBoost、LightGBM |
XGBoost官方文档(https://xgboost.readthedocs.io/)、LightGBM官方文档(https://lightgbm.readthedocs.io/) |
https://github.com/dmlc/xgboost、https://github.com/microsoft/LightGBM |
B站集成学习原理与实战(https://www.bilibili.com/search?keyword=%E9%9B%86%E6%88%90%E5%AD%A6%E4%B9%A0)、网易云课堂XGBoost调优课程(https://study.163.com/course/introduction.htm?courseId=1210058805) | ||
|
其他算法:KNN、SVM、朴素贝叶斯 |
Scikit-learn官方文档(https://scikit-learn.org/stable/)、机器学习社区MLflow(https://mlflow.org/) |
https://github.com/justmarkham/scikit-learn-videos |
B站SVM原理与实现(https://www.bilibili.com/search?keyword=SVM%20%E5%8E%9F%E7%90%86%E4%B8%8E%E5%AE%9E%E7%8E%B0)、慕课网KNN与朴素贝叶斯实战(https://www.imooc.com/course/list?c=data&keyword=KNN%20%E6%9C%B4%E7%B4%A0%E8%B4%9D%E5%8F%B6%E6%96%AF) | ||
|
无监督学习算法 |
聚类算法(K-Means、DBSCAN)、降维算法(PCA、t-SNE) |
Scikit-learn官方文档(https://scikit-learn.org/stable/)、数据科学社区Towards Data Science(https://towardsdatascience.com/) |
https://github.com/scikit-learn/scikit-learn/tree/main/examples/cluster |
B站无监督学习算法详解(https://www.bilibili.com/search?keyword=%E6%97%A0%E7%9B%91%E7%9D%A3%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95)、慕课网PCA与K-Means实战课程(https://www.imooc.com/course/list?c=data&keyword=PCA%20K-Means) | |
|
进阶阶段:深度学习(3-4个月) |
深度学习基础 |
神经网络基本结构:神经元、激活函数、隐藏层 |
PyTorch官方文档(https://pytorch.org/docs/stable/)、TensorFlow官方文档(https://www.tensorflow.org/learn) |
https://github.com/rasbt/deep-learning-book |
B站《深度学习》(Goodfellow)配套讲解(https://www.bilibili.com/search?keyword=Goodfellow%20%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0)、慕课网神经网络基础课程(https://www.imooc.com/course/list?c=data&keyword=%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%9F%BA%E7%A1%80) |
|
反向传播算法:核心原理与计算过程 |
3Blue1Brown官网(https://www.3blue1brown.com/)、深度学习社区Distill(https://distill.pub/) |
https://github.com/mnielsen/neural-networks-and-deep-learning |
B站反向传播算法可视化讲解(https://www.bilibili.com/search?keyword=%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%20%E5%8F%AF%E8%A7%86%E5%8C%96)、Coursera深度学习反向传播专题(https://www.coursera.org/learn/deep-neural-network/lecture/6d6255fb/backpropagation-intuition-i) | ||
|
深度学习框架:TensorFlow/PyTorch入门 |
PyTorch官方教程(https://pytorch.org/tutorials/)、TensorFlow官方教程(https://www.tensorflow.org/tutorials) |
https://github.com/pytorch/tutorials、https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials |
B站PyTorch零基础入门(https://www.bilibili.com/search?keyword=PyTorch%20%E9%9B%B6%E5%9F%BA%E7%A1%80%E5%85%A5%E9%97%A8)、慕课网TensorFlow实战课程(https://www.imooc.com/course/list?c=data&keyword=TensorFlow) | ||
|
经典与最新深度学习模型 |
CNN:卷积层、池化层、经典模型(LeNet-5、AlexNet、ResNet) |
PyTorch官方文档CNN专区(https://pytorch.org/docs/stable/nn.html#convolution-layers)、计算机视觉社区CVPR官网(https://cvpr.thecvf.com/) |
https://github.com/weiaicunzai/pytorch-cifar100、https://github.com/pytorch/vision/tree/main/torchvision/models |
B站CNN原理与经典模型解析(https://www.bilibili.com/search?keyword=CNN%20%E5%8E%9F%E7%90%86%E4%B8%8E%E7%BB%8F%E5%85%B8%E6%A8%A1%E5%9E%8B)、慕课网ResNet实战课程(https://www.imooc.com/course/list?c=data&keyword=ResNet) | |
|
RNN/LSTM/GRU、Transformer模型 |
Hugging Face官网(https://huggingface.co/)、NLP社区ACL官网(https://www.aclweb.org/portal/) |
https://github.com/huggingface/transformers、https://github.com/karpathy/char-rnn |
B站Transformer原理可视化(https://www.bilibili.com/search?keyword=Transformer%20%E5%8E%9F%E7%90%86%E5%8F%AF%E8%A7%86%E5%8C%96)、慕课网LSTM文本分类实战(https://www.imooc.com/course/list?c=data&keyword=LSTM%20%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB) | ||
|
2024-2025最新模型:多模态大模型(EgoNet、SenseFusion-5.0)、混合专家模型(MoE) |
DAMO开发者矩阵(https://damodev.csdn.net/)、Meta AI Research(https://ai.meta.com/research/)、商汤科技官网(https://www.sensetime.com/) |
https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/multimodal、https://github.com/deepseek-ai/DeepSeek-MoE |
B站多模态大模型实战教程(https://www.bilibili.com/search?keyword=%E5%A4%9A%E6%A8%A1%E6%80%81%E5%A4%A7%E6%A8%A1%E5%9E%8B%20%E5%AE%9E%E6%88%98)、浙江大学AI模型与算法课程(https://www.icourse163.org/course/ZJU-1003377027) | ||
|
方向深耕阶段(3-6个月) |
计算机视觉(CV) |
核心任务:图像分类、目标检测(YOLO、Faster R-CNN)、图像分割(U-Net) |
CVPR官网(https://cvpr.thecvf.com/)、开源视觉库OpenCV官网(https://opencv.org/) |
https://github.com/ultralytics/ultralytics(YOLO)、https://github.com/matterport/Mask_RCNN |
B站目标检测算法实战(https://www.bilibili.com/search?keyword=%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95%E5%AE%9E%E6%88%98)、慕课网OpenCV与图像分割课程(https://www.imooc.com/course/list?c=data&keyword=OpenCV%20%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2) |
|
最新进展:视觉-触觉多模态融合、边缘AI轻量化部署(昇腾Lite、骁龙AI-Edge-2) |
高通AI官网(https://www.qualcomm.com/technologies/ai)、华为昇腾官网(https://www.huawei.com/cn/ascend) |
https://github.com/Ascend/samples、https://github.com/Qualcomm-AI-research/AI-Edge-Examples |
B站边缘AI部署实战(https://www.bilibili.com/search?keyword=%E8%BE%B9%E7%BC%98AI%20%E9%83%A8%E7%BD%B2%E5%AE%9E%E6%88%98)、华为昇腾AI学习视频(https://www.huawei.com/cn/ascend/training) | ||
|
自然语言处理(NLP) |
核心任务:文本分类、NER、文本摘要、机器翻译 |
ACL官网(https://www.aclweb.org/portal/)、Hugging Face官网(https://huggingface.co/) |
https://github.com/huggingface/transformers/tree/main/examples/pytorch、https://github.com/kyzhouhzau/BERT-NER |
B站BERT原理与NLP实战(https://www.bilibili.com/search?keyword=BERT%20%E5%8E%9F%E7%90%86%20NLP)、慕课网文本摘要与机器翻译课程(https://www.imooc.com/course/list?c=data&keyword=%E6%96%87%E6%9C%AC%E6%91%98%E8%A6%81%20%E6%9C%BA%E5%99%A8%E7%BF%BB%E8%AF%91) | |
|
最新进展:神经符号融合(Watson-X、智谱N-S)、AIGC文本生成与润色 |
IBM Watson官网(https://www.ibm.com/watson)、智谱AI官网(https://www.zhipuai.cn/)、国家高等教育智慧教育平台(https://higher.smartedu.cn/) |
https://github.com/IBM/watsonx-ai-samples、https://github.com/zhipuai/chatglm-openapi-python |
B站AIGC文本生成实战(https://www.bilibili.com/search?keyword=AIGC%20%E6%96%87%E6%9C%AC%E7%94%9F%E6%88%90)、国家高等教育智慧教育平台AIGC实践课程(https://higher.smartedu.cn/course/677c619ab60b1822c5e5af06) | ||
|
强化学习与AGI雏形 |
核心概念、Q-Learning、DQN算法、动态认知图谱 |
OpenAI官网(https://openai.com/)、DeepMind官网(https://deepmind.com/)、强化学习社区ArXiv RL专区(https://arxiv.org/list/cs.LG/recent) |
https://github.com/openai/gym、https://github.com/dennybritz/reinforcement-learning、https://github.com/deepmind/gemini-next-samples |
B站强化学习原理与游戏AI实战(https://www.bilibili.com/search?keyword=%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%20%E6%B8%B8%E6%88%8F%E5%AE%9E%E6%88%98)、Coursera强化学习专项课程(https://www.coursera.org/specializations/reinforcement-learning) | |
|
AI for Science:蛋白质结构预测(Alpha-Fold-3)、材料设计 |
DeepMind官网(https://deepmind.com/)、悟道·科学大模型官网(https://www.wudaoai.cn/) |
https://github.com/deepmind/alphafold、https://github.com/wudaogithub/WuDao-Science |
B站AI for Science实战教程(https://www.bilibili.com/search?keyword=AI%20for%20Science%20%E5%AE%9E%E6%88%98)、DeepMind Alpha-Fold官方教程(https://www.youtube.com/c/DeepMind) | ||
|
推荐系统 |
协同过滤、深度学习推荐模型(NCF、DeepFM) |
RecSys官网(https://recsys.acm.org/)、推荐系统社区RecSys Papers(https://recsys-papers.com/) |
https://github.com/NVIDIA/DeepRecommender、https://github.com/shenweichen/DeepCTR |
B站推荐系统原理与实战(https://www.bilibili.com/search?keyword=%E6%8E%A8%E8%8D%90%E7%B3%BB%E7%BB%9F%20%E5%8E%9F%E7%90%86%E5%AE%9E%E6%88%98)、慕课网DeepFM与NCF实战课程(https://www.imooc.com/course/list?c=data&keyword=DeepFM%20NCF) | |
|
最新进展:多模态推荐、实时推荐系统优化 |
美团技术团队博客(https://tech.meituan.com/)、阿里妈妈技术官网(https://amall.aliyun.com/) |
https://github.com/meituan/byteair-sdk-python、https://github.com/alibaba/EasyRec |
B站多模态推荐系统实战(https://www.bilibili.com/search?keyword=%E5%A4%9A%E6%A8%A1%E6%80%81%E6%8E%A8%E8%8D%90%E7%B3%BB%E7%BB%9F)、美团技术公开课(https://tech.meituan.com/talks/) | ||
|
工程化与项目实战阶段 |
工程化能力培养 |
数据处理工程:大规模数据集清洗、预处理、数据增强 |
Kaggle Learn数据处理专区(https://www.kaggle.com/learn/data-cleaning)、数据工程社区Data Engineering Central(https://dataengineeringcentral.com/) |
https://github.com/awslabs/datawig(数据增强)、https://github.com/altair-viz/altair(数据可视化) |
B站大规模数据处理实战(https://www.bilibili.com/search?keyword=%E5%A4%A7%E8%A7%84%E6%A8%A1%E6%95%B0%E6%8D%AE%E5%A4%84%E7%90%86)、慕课网数据工程与数据增强课程(https://www.imooc.com/course/list?c=data&keyword=%E6%95%B0%E6%8D%AE%E5%B7%A5%E7%A8%8B) |
|
模型训练与优化:批量训练、分布式训练、模型剪枝与量化 |
PyTorch分布式训练文档(https://pytorch.org/docs/stable/distributed.html)、TensorRT官网(https://developer.nvidia.com/tensorrt) |
https://github.com/pytorch/examples/tree/main/distributed、https://github.com/NVIDIA/TensorRT |
B站模型优化与分布式训练实战(https://www.bilibili.com/search?keyword=%E6%A8%A1%E5%9E%8B%E4%BC%98%E5%8C%96%20%E5%88%86%E5%B8%83%E5%BC%8F%E8%AE%AD%E7%BB%83)、网易云课堂TensorRT模型部署课程(https://study.163.com/course/introduction.htm?courseId=1212543802) | ||
|
综合项目实战 |
基础项目:手写数字识别、文本情感分析、图像分割工具 |
Kaggle(https://www.kaggle.com/)、天池竞赛平台(https://tianchi.aliyun.com/) |
https://github.com/pytorch/examples/tree/main/mnist、https://github.com/bentrevett/pytorch-sentiment-analysis |
B站MNIST手写数字识别实战(https://www.bilibili.com/search?keyword=MNIST%20%E6%89%8B%E5%86%99%E6%95%B0%E5%AD%97%E8%AF%86%E5%88%AB)、慕课网文本情感分析项目课程(https://www.imooc.com/course/list?c=data&keyword=%E6%96%87%E6%9C%AC%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90%E9%A1%B9%E7%9B%AE) | |
|
进阶项目:实时目标检测应用、AIGC文本生成工具、智能问答系统 |
Hugging Face Spaces(https://huggingface.co/spaces)、阿里云AI项目平台(https://ai.aliyun.com/)、国家高等教育智慧教育平台(https://higher.smartedu.cn/) |
https://github.com/ultralytics/ultralytics/tree/main/examples、https://github.com/chroma-core/chroma(问答系统)、https://github.com/openai/openai-cookbook |
B站实时目标检测系统开发(https://www.bilibili.com/search?keyword=%E5%AE%9E%E6%97%B6%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%B3%BB%E7%BB%9F%E5%BC%80%E5%8F%91)、国家高等教育智慧教育平台实战课程(https://higher.smartedu.cn/course/677c619ab60b1822c5e5af06) |