如何导入源代码到JBUIDER?

dhtiger123 2005-04-24 06:04:49
想研究源代码,却不知道如何导入,重新建项目文件,却没有相关的部署文件?

J2EE整个结构没法导入吗?
...全文
57 2 打赏 收藏 转发到动态 举报
写回复
用AI写文章
2 条回复
切换为时间正序
请发表友善的回复…
发表回复
kaymo 2005-04-24
  • 打赏
  • 举报
回复
建个工程,copy到src目录下不行么?
MARS.nEIL 2005-04-24
  • 打赏
  • 举报
回复
没有项目文件,只怕有难度..不熟.帮你顶..
提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。

67,541

社区成员

发帖
与我相关
我的任务
社区描述
J2EE只是Java企业应用。我们需要一个跨J2SE/WEB/EJB的微容器,保护我们的业务核心组件(中间件),以延续它的生命力,而不是依赖J2SE/J2EE版本。
社区管理员
  • Java EE
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧