?????? uniqueidentifier字段中使用newid()函数产生的数值永远都不重复吗?

MS-SQL Server > 应用实例 [问题点数:100分,结帖人goj2000]
等级
本版专家分:0
结帖率 96.77%
等级
本版专家分:885144
勋章
Blank
名人 年度总版至少三次排名前十即授予名人勋章
Blank
状元 2005年 总版技术专家分年内排行榜第一
2004年 总版技术专家分年内排行榜第一
Blank
进士 2006年 总版技术专家分年内排行榜第六
2003年 总版技术专家分年内排行榜第八
Blank
金牌 2005年6月 总版技术专家分月排行榜第一
2005年5月 总版技术专家分月排行榜第一
2005年4月 总版技术专家分月排行榜第一
2005年3月 总版技术专家分月排行榜第一
2005年2月 总版技术专家分月排行榜第一
2005年1月 总版技术专家分月排行榜第一
2004年12月 总版技术专家分月排行榜第一
2004年11月 总版技术专家分月排行榜第一
2004年10月 总版技术专家分月排行榜第一
2004年9月 总版技术专家分月排行榜第一
2004年8月 总版技术专家分月排行榜第一
2004年7月 总版技术专家分月排行榜第一
2004年6月 总版技术专家分月排行榜第一
2004年5月 总版技术专家分月排行榜第一
2004年4月 总版技术专家分月排行榜第一
2004年3月 总版技术专家分月排行榜第一
2004年1月 总版技术专家分月排行榜第一
2003年12月 总版技术专家分月排行榜第一
等级
本版专家分:24833
勋章
Blank
黄花 2005年3月 MS-SQL Server大版内专家分月排行榜第二
等级
本版专家分:0
等级
本版专家分:0
等级
本版专家分:885144
勋章
Blank
名人 年度总版至少三次排名前十即授予名人勋章
Blank
状元 2005年 总版技术专家分年内排行榜第一
2004年 总版技术专家分年内排行榜第一
Blank
进士 2006年 总版技术专家分年内排行榜第六
2003年 总版技术专家分年内排行榜第八
Blank
金牌 2005年6月 总版技术专家分月排行榜第一
2005年5月 总版技术专家分月排行榜第一
2005年4月 总版技术专家分月排行榜第一
2005年3月 总版技术专家分月排行榜第一
2005年2月 总版技术专家分月排行榜第一
2005年1月 总版技术专家分月排行榜第一
2004年12月 总版技术专家分月排行榜第一
2004年11月 总版技术专家分月排行榜第一
2004年10月 总版技术专家分月排行榜第一
2004年9月 总版技术专家分月排行榜第一
2004年8月 总版技术专家分月排行榜第一
2004年7月 总版技术专家分月排行榜第一
2004年6月 总版技术专家分月排行榜第一
2004年5月 总版技术专家分月排行榜第一
2004年4月 总版技术专家分月排行榜第一
2004年3月 总版技术专家分月排行榜第一
2004年1月 总版技术专家分月排行榜第一
2003年12月 总版技术专家分月排行榜第一
等级
本版专家分:885144
勋章
Blank
名人 年度总版至少三次排名前十即授予名人勋章
Blank
状元 2005年 总版技术专家分年内排行榜第一
2004年 总版技术专家分年内排行榜第一
Blank
进士 2006年 总版技术专家分年内排行榜第六
2003年 总版技术专家分年内排行榜第八
Blank
金牌 2005年6月 总版技术专家分月排行榜第一
2005年5月 总版技术专家分月排行榜第一
2005年4月 总版技术专家分月排行榜第一
2005年3月 总版技术专家分月排行榜第一
2005年2月 总版技术专家分月排行榜第一
2005年1月 总版技术专家分月排行榜第一
2004年12月 总版技术专家分月排行榜第一
2004年11月 总版技术专家分月排行榜第一
2004年10月 总版技术专家分月排行榜第一
2004年9月 总版技术专家分月排行榜第一
2004年8月 总版技术专家分月排行榜第一
2004年7月 总版技术专家分月排行榜第一
2004年6月 总版技术专家分月排行榜第一
2004年5月 总版技术专家分月排行榜第一
2004年4月 总版技术专家分月排行榜第一
2004年3月 总版技术专家分月排行榜第一
2004年1月 总版技术专家分月排行榜第一
2003年12月 总版技术专家分月排行榜第一
goj2000

等级:

在sql server创建一个表,表中字段testb是uniqueidentifier类型的,使用NEWID()生成, 这个数据是全球...

在sqlserver创建一个表,表中字段testb是uniqueidentifier类型的,使用NEWID()生成, 这个数据是全球唯一的么? 假设数据库记录一直增长,会不会出现两组相同的数据? 下面是参考链接及材料: ...

sql server newid()自动填充 uniqueidentifier 字段

插入、修改时候用 newid()函数就行了 举个栗子: 插入newid(): INSERT [dbo].[TABLENAME] ([Id], [Name], [CreatedBy], [CreatedOn], [LastModifiedBy], [LastModifiedOn]) VALUES (NEWI...

c# 插入数据到 uniqueidentifier_如何使用 SQL Server FILESTREAM 存储非结构化数据?

作者 |ALEN İBRIÇ译者 | 火火酱,责编 | Carol封图 |CSDN 付费下载于视觉中国 在本文,我将解释如何使用SQL Server FILESTREAM来存储非结构化数据。同时,还会介绍FILESTREAM的优缺点。在SQL Server的早期版本...

使用 SQL Server 的 uniqueidentifier 字段类型

原文:使用 SQL Server 的 uniqueidentifier 字段类型 SQL Server 自 2008 版起引入了 uniqueidentifier 字段,它存储的是一个 UUID, 或者叫 GUID,内部存储为 16 个字节。SQL Server 可用两个函数来...

SQL--使用NewID函数,创建GUID列

USE master GO IF EXISTS (SELECT * FROM sysdatabases WHERE name='DB_Temp') DROP DATABASE DB_Temp GO CREATE DATABASE DB_Temp GO USE DB_Temp ...IF EXISTS(SELECT * FROM sysobjects WHE...

mysql 有newid()_sql newid()随机函数

用SELECT TOP 10 * FROM ywle order by newid() order by 一般是根据某一字段排序,newid()的返回值 是uniqueidentifier ,order by newid()随机选取记录是如何进行的 newid()在扫描每条记录的时候生成一个值, 而...

newid mysql_sql newid()随机函数

用SELECT TOP 10 * FROM ywle order by newid()order by 一般是根据某一字段排序,newid()的返回值 是uniqueidentifier ,order by newid()随机选取记录是如何进行的newid()在扫描每条记录的时候生成一个值, 而生成...

SQLServer Checksum、 NewID、Rand函数使用(实例:每行随机数一样)

Rand():此函数生成从0到1之间随机 float 值 newid():此函数生成 uniqueidentifier 类型的唯一值Checksum:总和检验码,校验和。 在SQLServerChecksum()需要传入1个参数,可以是任何类型,如下示例:[sql] ...

SQL server 内置函数之随机函数newid()和rand()

order by 一般是根据某一字段排序,newid()的返回值 是uniqueidentifier ,order by newid()随机选取记录是如何进行的 newid()在扫描每条记录的时候生成一个值, 而生成的值是随机的, 没有大小写顺序. 所以最终结果...

sql newid()随机函数

order by 一般是根据某一字段排序,newid()的返回值 是uniqueidentifier ,order by newid()随机选取记录是如何进行的 newid()在扫描每条记录的时候生成一个值, 而生成的值是随机的, 没有大小写顺序. 所以最终结果...

SQL NEWID()随机函数

用SELECT TOP 10 * FROM ywle order by newid()order by 一般是根据某一字段排序,newid()的返回值 是uniqueidentifier ,order by newid()随机选取记录是如何进行的newid()在扫描每条记录的时候生成一个值, 而生成...

项目问题总结2:GUID区分大小写吗?

最近在做项目的过程,遇到一个问题,将从基础系统查询出来的课程ID作为参数去考评系统里查询考试信息,却什么也查出来,调试了半天知道什么原因。 问题分析: 静下心来思考一下,可以肯定程序代码逻辑以及...

Sql Server identity VS uniqueidentifier

把你的字段指定为唯一标识符的类型和使用NEWID() 或者NEWSEQUENTIALID()函数的DEFAULT约束,若字段指定为唯一标识符的类型,则DEFAULT约束必须用来把一个全球唯一标识符分配给这个字段NewID()  Identity与 ...

主键设计用什么字段类型比较好?

主键的必要性: 有些朋友可能提倡数据库表必须要主键,但在我的思考,觉得每个表应该具有主键,不管是单主键还是双主键,主键的存在就代表着表结构的完整性,表的记录必须得有唯一区分的字段,主键主要是用于...

在Sql2005,向表插入数据时遇到uniqueidentifier列,如何插入数据?

Sql2005,提供了uniqueidentifier 数据类型。说白了,就是个GUID,这种类型开发时倒是很有必要的。今天程序遇到了这个问题:表里定义了一个uniqueidentifier 列,Asp.net程序需要向表插入新的数据。Insert ...

mysql2008主键是什么_mysql数据库表用什么做主键?

匿名用户1级2008-11-01 回答1、主键定义表经常有一个列或多列的组合,其值...一个表只能有一个 PRIMARY KEY 约束,而且 PRIMARY KEY 约束的列能接受空值。由于 PRIMARY KEY 约束确保唯一数据,所以经常用来定...

怎么分辨数据库的主键和外键?

2019独角兽企业重金招聘Python工程师标准>>> ...

SQL Server GUID 数据迁移至MongoDB后怎样查看?

SQL ServerNEWID数据存储到MongoDB会是什么样子呢?发现能简单的通过此数据查询了。 例如我们将SQL Server 数据库的QQStatements2019表迁移至MongoDB ,集合命名也为QQStatements2019。 在SQL Ser...

从sqlserver数据写入mysql_[SQL Server]SQL Server数据库如何返回INSERT INTO语句插入/写入数据后的...

问题描述SQL Server数据库,有时候当我们使用INSERT INTO语句写入数据后,需要返回写入数据对应的自增ID或者GUID,以便根据此记录进行后续的操作。那么SQL语句如何实现返回记录值的操作呢?示例数据表结构:SET ...

SQLServer "uniqueidentifier" 类型

uniqueidentifier” 为16字节固定长度...用户通过"NEWID()"函数来生成uniqueidentifier数值,例如 create table dbo.t_uniqueidentifier ( id uniqueidentifier, name varchar(20) ) insert into dbo.t_unique

计算机设计大赛作品开发文档

参加的是2020年的计算机设计大赛,软件应用与开发赛道。我们的开发文档仅供参考。(20页)

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

VSCode launch.json配置详细教程

主要介绍了vscode 的node.js debugger 的 launch.json 配置详情,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

从零基础开始用Python处理Excel数据.pdf

首先学习Python的基础知识,然后使用Python来控制Excel,做数据处理。 Excel使用者、Python爱好者、数据处理人员、办公人员等 第1章 python基础 1.1 什么是python? 1.2 为什么要学习用Python处理Excel表格? 1.3 手把手教你安装python程序 1.3.1 下载python 1.3.2 安装python 1.3.3 验证是否安装成功 1.4 安装Python集成开发工具PyCharm 1.4.1 下载 1.4.2 安装 1.5 Python的输入与输出

数学建模30种算法大全

数学建模最常用的30种算法! 全国大学生数学建模竞赛创办于1992年,每年一届,已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2018年,来自全国34个省/市/区(包括香港、澳门和台湾)及美国和新加坡的1449所院校/校区、42128个队(本科38573队、专科3555队)、超过12万名大学生报名参加本项竞赛。

常见30种数学建模模型

常见的30种数学模型,比较详细,非常适合搞数学建模的学生使用

matlab教程ppt(完整版).pdf

MATLAB信号处理详解 结合MATLAB最新版本系统地介绍信号处理及现代信号处理或者非平稳信号处理(包括信号处理、阵列信号处理、时频分析及高阶谱分析)的基本理论及在工程应用中的一些基本方法;详细地介绍MATlLAB工具箱函数的用法;最后结合一些应用实例,说明基于MATLAB进行分析与设计的方法。 《MATLAB信号处理》首次将信号处理涉及的各种MATLAB工具箱全面加以说明分析,简明扼要地介绍相关领域的基本概念和基本理论,重在讲述有关基本理论和物理背景,避开繁复的推导和中间过程,结合编程应用介绍工具箱函数的功能及用法,并且通过各种应用实例阐述如何利用MATLAB工具箱来解决工程应用问题。

2020年五一赛B题论文

自己做的五一赛论文,代码数据都在附录。本文针对股票投资组合问题进行了研究,建立了投资效用与多目标规划模 型,运用了历史模拟、灰色关联等方法,旨在确定股票投资组合策略。

Java面试题大全(备战2021)

这本面试手册包含了Java基础、Java集合、JVM、Spring、Spring Boot、Spring Cloud、Mysql、Redis、RabbitMQ、Dubbo、Netty、分布式及架构设计等方面的技术点。内容难度参差,满足初中高级Java工程师的面试需求。

波士顿房价预测数据及代码

本资源包含数据,代码,解释,相应的文件。代码是练习用的,文章中的代码都可以运行出来,是很好的一个练手项目。

相关热词 c# 字符串后六位 c#程序如何创建本地文本 c#和java比较 c# list 查找 c#打开窗体 c# 逻辑循环 c# 去数组中的数据库 c# 查找所有集成类 c#调用c++ 结构封装 c#两个类属性绑定