“error creating form invaild binary value on line 1449”是什么错误。

shanlin 2005-10-31 10:49:12
本来程序是好好的,突然不知道怎么就出现了这个问题。
...全文
64 1 打赏 收藏 转发到动态 举报
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
aiirii 2005-10-31
  • 打赏
  • 举报
回复
有可能 dfm 文件出问题了
Version 1.7 ----------- - ADD: Delphi/CBuilder 10.2 Tokyo now supported. - ADD: Delphi/CBuilder 10.1 Berlin now supported. - ADD: Delphi/CBuilder 10 Seattle now supported. - ADD: Delphi/CBuilder XE8 now supported. - ADD: Delphi/CBuilder XE7 now supported. - ADD: Delphi/CBuilder XE6 now supported. - ADD: Delphi/CBuilder XE5 now supported. - ADD: Delphi/CBuilder XE4 now supported. - ADD: Delphi/CBuilder XE3 now supported. - ADD: Delphi/CBuilder XE2 now supported. - ADD: Delphi/CBuilder XE now supported. - ADD: Delphi/CBuilder 2010 now supported. - ADD: Delphi/CBuilder 2009 now supported. - ADD: New demo project FlexCADImport. - FIX: The height of the TFlexRegularPolygon object incorrectly changes with its rotation. - FIX: Added division by zero protect in method TFlexControl.MovePathSegment. - FIX: The background beyond docuemnt wasn't filled when TFlexPanel.DocClipping=True. - FIX: In "Windows ClearType" font rendering mode (OS Windows mode) the "garbage" pixels can appear from the right and from the bottom sides of the painted rectangle of the TFlexText object. - FIX: The result rectangle incorrectly calculated in the TFlexText.GetRefreshRect method. - FIX: Added FPaintCache.rcPaint cleanup in the TFlexPanel.WMPaint method. Now it is possible to define is the drawing take place via WMPaint or via the PaintTo direct call (if rcPaint contain non-empty rectangle then WMPaint in progress). - FIX: The TFlexPanel.FPaintCache field moved in the protected class section. Added rcPaint field in FPaintCache that represents drawing rectangle. - ADD: In the text prcise mode (TFlexText.Precise=True) takes into account the rotation angle (TFlexText.Angle). - FIX: Removed FG_NEWTEXTROTATE directive (the TFlexText Precise mode should be used instead). - FIX: The TFlexRegularPolygon object clones incorrectly drawed in case when TFlexRegularPolygon have alternative brush (gradient, texture). - ADD: Add TFlexPanel.InvalidateControl virtual method which calls from TFle
包含如下操作系统版本 FreeBSD Linux Solaris Windows 分别对应如下目录 MegaCLI for DOS MegaCLI for Linux MegaCLI for Solaris MegaCLI for FreeBSD MegaCLI for Windows ********************************************* LSI Corp. MegaRAID MegaCLI Release ********************************************* Release Date: 01/20/14 ======================== Supported Controllers ================== MegaRAID SAS 9270-8i MegaRAID SAS 9271-4i MegaRAID SAS 9271-8i MegaRAID SAS 9271-8iCC MegaRAID SAS 9286-8e MegaRAID SAS 9286CV-8e MegaRAID SAS 9286CV-8eCC MegaRAID SAS 9265-8i MegaRAID SAS 9285-8e MegaRAID SAS 9240-4i MegaRAID SAS 9240-8i MegaRAID SAS 9260-4i MegaRAID SAS 9260CV-4i MegaRAID SAS 9260-8i MegaRAID SAS 9260CV-8i MegaRAID SAS 9260DE-8i MegaRAID SAS 9261-8i MegaRAID SAS 9280-4i4e MegaRAID SAS 9280-8e MegaRAID SAS 9280DE-8e MegaRAID SAS 9280-24i4e MegaRAID SAS 9280-16i4e MegaRAID SAS 9260-16i MegaRAID SAS 9266-4i MegaRAID SAS 9266-8i MegaRAID SAS 9285CV-8e MegaRAID SAS 8704ELP MegaRAID SAS 8704EM2 MegaRAID SAS 8708ELP MegaRAID SAS 8708EM2 MegaRAID SAS 8880EM2 MegaRAID SAS 8888ELP MegaRAID SAS 8308ELP* MegaRAID SAS 8344ELP* MegaRAID SAS 84016E* MegaRAID SAS 8408E* MegaRAID SAS 8480E* MegaRAID SATA 300-8ELP* *These older controllers should work but have not been tested. Component: ========= SAS MegaRAID MegaCLI Release Date: 01/20/14 Version Numbers: MegaCLI =============== =========== Current Version 8.07.14 Previous Version 8.07.07 Contents: ========= This package contains MegaCLI for the following OSes: DOS FreeBSD Linux Solaris Windows Use the MegaCLI components from the folder that matches your OS. Enhancements and Bug Fixes ========================== SCGCQ00393585 (DFCT) - VD creation from MegaCli fails on Solaris Sparc 10u9 operating system. SCGCQ00413883 (DFCT) - "megacli -version -pd -a0" Segmentation Faults if PDs are missing SCGCQ00445356 (CSET) - Megacli crashes after invoking any command in SGI system with one 9280-8e and 2 quad port qlogic FC cards. SCGCQ
1. Introduction to Zend Framework 1.1. 概述 1.2. 安装 2. Zend_Acl 2.1. 简介 2.1.1. 关于资源(Resource) 2.1.2. 关于角色(Role) 2.1.3. 创建访问控制列表(ACL) 2.1.4. 注册角色(Role) 2.1.5. 定义访问控制 2.1.6. 查询 ACL 2.2. 精细的访问控制 2.2.1. 精细的访问控制 2.2.2. 除去访问控制 2.3. 高级用法 2.3.1. 保存 ACL 数据确保持久性 2.3.2. 使用声明(Assert)来编写条件性的 ACL 规则 3. Zend_Auth 3.1. 简介 3.1.1. 适配器 3.1.2. 结果 3.1.3. 身份的持久(Persistence) 3.1.3.1. 在PHP Session 中的缺省持久(Persistence) 3.1.3.2. 实现订制存储 3.1.4. 使用Zend_Auth 3.2. 数据库表认证 3.2.1. 简介 3.2.2. 高级使用:持久一个 DbTable 结果对象 3.2.3. 高级用法示例 3.3. 摘要式认证 3.3.1. 简介 3.3.2. 规范(Specifics) 3.3.3. 身份(Identity) 3.4. HTTP 认证适配器 3.4.1. 简介 3.4.2. 设计回顾 3.4.3. 配置选项 3.4.4. Resolvers 3.4.4.1. 文件 Resolver 3.4.5. 基本用法 4. Zend_Cache 4.1. 简介 4.2. 缓存原理 4.2.1. Zend_Cache 工厂方法 4.2.2. 标记纪录 4.2.3. 缓存清理 4.3. Zend_Cache前端 4.3.1. Zend_Cache_Core 4.3.1.1. 简介 4.3.1.2. 可用选项 4.3.1.3. 例子 4.3.2. Zend_Cache_Frontend_Output 4.3.2.1. 简介 4.3.2.2. 可用的选项 4.3.2.3. 例子 4.3.3. Zend_Cache_Frontend_Function 4.3.3.1. Introduction 4.3.3.2. A可用的选项 4.3.3.3. 例子 4.3.4. Zend_Cache_Frontend_Class 4.3.4.1. Introduction 4.3.4.2. Available options 4.3.4.3. Examples 4.3.5. Zend_Cache_Frontend_File 4.3.5.1. Introduction 4.3.5.2. Available options 4.3.5.3. Examples 4.3.6. Zend_Cache_Frontend_Page 4.3.6.1. Introduction 4.3.6.2. Available options (for this frontend in Zend_Cache factory) 4.3.6.3. Examples 4.4. Zend_Cache后端 4.4.1. Zend_Cache_Backend_File 4.4.2. Zend_Cache_Backend_Sqlite 4.4.3. Zend_Cache_Backend_Memcached 4.4.4. Zend_Cache_Backend_Apc 4.4.5. Zend_Cache_Backend_ZendPlatform 5. Zend_Config 5.1. 简介 5.2. 操作理论 5.3. Zend_Config_Ini 5.4. Zend_Config_Xml 6. Zend_Console_Getopt 6.1. Getopt 简介 6.2. 声明 Getopt 规则 6.2.1. 用短语法声明选项 6.2.2. 用长语法声明选项 6.3. 读取(Fetching)选项和参数 6.3.1. 操作 Getopt 异常 6.3.2. 通过名字读取 (Fetching)选项 6.3.3. 报告选项 6.3.4. 读取非选项参数 6.4. 配置 Zend_Console_Getopt 6.4.1. 添加选项规则 6.4.2. 添加帮助信息 6.4.3. 添加选项别名 6.4.4. 添加参数列表 6.4.5. 添加配置 7. Zend_Controller 7.1. Zend_Controller 快速入门 7.1.1. 简介 7.1.2. 入门 7.1.2.1. 文件系统的组织结构 7.1.2.2. 设置文件根目录 7.1.2.3. 创建URL重写规则 7.1.2.4. 创建你的bootstrap文件 7.1.2.5. 创建默认的控制器(Action Controller) 7.1.2.6. 创建你的视图脚本 7.1.2.7. 创建你自己的错误控制器 7.1.2.8. 访问站点! 7.2. Zend_Controller 基础 7.3. 前端控制器 7.3.1. 概述 7.3.2. 主要方法 7.3.2.1. getInstance() 7.3.2.2. setControllerDirectory() 和 addControllerDirectory() 7.3.2.3. dispatch() 7.3.2.4. run() 7.3.3. 环境访问器方法 7.3.4. 前端控制器参数 7.3.5. 继承前端控制器 7.4. 请求对象 7.4.1. 介绍 7.4.2. HTTP 请求 7.4.2.1. 访问请求数据 7.4.2.2. 基地址和子目录 7.4.2.3. 决定请求方式 7.4.2.4. 删除 AJAX 请求 7.4.3. 子类化请求对象 7.5. 标准路由器:Zend_Controller_Router_Rewrite 7.5.1. 简介 7.5.2. 使用路由器 7.5.3. 基本的Rewrite路由器操作 7.5.4. 缺省路由 7.5.5. 基本 URL 和子目录 7.5.6. Route Types 7.5.6.1. Zend_Controller_Router_Route 7.5.6.1.1. 变量缺省 7.5.6.1.2. 变量请求 7.5.6.2. Zend_Controller_Router_Route_Static 7.5.6.3. Zend_Controller_Router_Route_Regex 7.5.7. 使用 Zend_Config with the RewriteRouter 7.5.8. Subclassing the Router 7.6. 分发器 7.6.1. 概述 7.6.2. 子类化分发器 7.7. 动作控制器 7.7.1. 简介 7.7.2. 对象初始化 7.7.3. 派遣前后的钩子 7.7.4. 访问器 7.7.5. 视图集成 7.7.5.1. 视图初始化 7.7.5.2. 解析(Rendering)视图 7.7.6. 实用方法 7.7.7. 继承(Subclassing)动作控制器 7.8. 动作助手 7.8.1. 介绍 7.8.2. 初始化助手 7.8.3. 助手经纪人 7.8.4. 内建的动作助手 7.8.4.1. 动作堆栈(助手) 7.8.4.2. AutoComplete 7.8.4.2.1. AutoCompletion with Dojo 7.8.4.2.2. AutoCompletion with Scriptaculous 7.8.4.3. ContextSwitch and AjaxContext 7.8.4.3.1. 缺省可用的上下文 7.8.4.3.2. 创建定制的上下文 7.8.4.3.3. 为每个动作设置上下文 7.8.4.3.4. 初始化上下文开关 7.8.4.3.5. 另外的功能 7.8.4.3.6. AjaxContext 函数 7.8.4.4. FlashMessenger 7.8.4.4.1. 简介 7.8.4.4.2. Basic Usage Example 7.8.4.5. JSON 7.8.4.6. 转向器(Redirector) 7.8.4.6.1. 介绍 7.8.4.6.2. 基础用例 7.8.4.7. ViewRenderer 7.8.4.7.1. 介绍 7.8.4.7.2. API 7.8.4.7.3. 基础用法示例 7.8.4.7.4. 高级用法示例 7.8.5. 编写自己的助手 7.9. 响应对象 7.9.1. 用法 7.9.2. 处理消息头 7.9.3. 命名片段 7.9.4. 在响应对象中测试异常 7.9.5. 子类化响应对象 7.10. 插件 7.10.1. 简介 7.10.2. 编写插件 7.10.3. 使用插件 7.10.4. 获取和控制插件 7.10.5. 包含在标准发行包中的插件 7.10.5.1. 动作堆栈 7.10.5.2. Zend_Controller_Plugin_ErrorHandler 7.10.5.2.1. 使用 ErrorHandler 作为一个 404 处理器(handler) 7.10.5.2.2. 处理以前呈现的(rendered)输出 7.10.5.2.3. 插件用法示例 7.10.5.2.4. 错误控制器示例 7.11. 使用传统的模块目录结构 7.11.1. 简介 7.11.2. 指定模块控制器目录 7.11.3. Routing to modules 7.11.4. 模块或全局缺省控制器 7.12. MVC 异常 7.12.1. 介绍 7.12.2. 如何处理异常? 7.12.3. 可能遭遇的MVC异常 7.13. 从以前的版本移植 7.13.1. 从 1.0.x 到 1.5.0 或更新的版本的移植 7.13.2. 从 0.9.3 到 1.0.0RC1 或更新的版本的移植 7.13.3. 从 0.9.2 移植到 0.9.3 或更新的版本 7.13.4. 从 0.6.0 移植到 0.8.0 或更新的版本 7.13.5. 从 0.2.0 或以前的版本移植到 0.6.0 8. Zend_Currency 8.1. Zend_Currency 简介 8.1.1. 为什么使用 Zend_Currency ? 8.2. 如何使用货币 8.2.1. 从货币创建输出 8.2.2. 修改货币格式 8.2.3. Zend_Currency 的信息方法 8.2.4. 设置新缺省值 8.2.5. 加速 Zend_Currency 8.3. 从前面的版本迁移 8.3.1. 从 1.0.2 到 1.0.3 或更新的迁移 9. Zend_Date 9.1. Introduction 9.1.1. Always Set a Default Timezone 9.1.2. Why Use Zend_Date? 9.2. 操作理论 9.2.1. 内部(Internals) 9.3. Basic Methods 9.3.1. The current date 9.3.2. Zend_Date by Example 9.3.2.1. Ouput a Date 9.3.2.2. Setting a Date 9.3.2.3. Adding and Subtracting Dates 9.3.2.4. Comparation of dates 9.4. Zend_Date API Overview 9.4.1. Zend_Date Options 9.4.1.1. Selecting the date format type 9.4.1.2. DST and Date Math 9.4.1.3. Month Calculations 9.4.1.4. Speed up date localization and normalization with Zend_Cache 9.4.1.5. Receiving syncronised timestamps with Zend_TimeSync 9.4.2. Working with Date Values 9.4.3. Basic Zend_Date Operations Common to Many Date Parts 9.4.3.1. List of Date Parts 9.4.3.2. List of Date Operations 9.4.4. Comparing Dates 9.4.5. Getting Dates and Date Parts 9.4.6. Working with Fractions of Seconds 9.4.7. Sunrise / Sunset 9.5. Creation of dates 9.5.1. Create the actual date 9.5.2. Create a date from database 9.5.3. Create dates from an array 9.6. Constants for General Date Functions 9.6.1. Using Constants 9.6.2. List of All Constants 9.6.3. Self-Defined OUTPUT Formats with ISO 9.6.4. Self-defined OUTPUT formats using PHP's date() format specifiers 9.7. Working examples 9.7.1. Checking dates 9.7.2. Sunrise and Sunset 9.7.3. Timezones 10. Zend_Db 10.1. Zend_Db_Adapter 10.1.1. 简介 10.1.2. 添加引号防止数据库攻击 10.1.3. 直接查询 10.1.4. 事务处理 10.1.5. 插入数据行 10.1.6. 更新数据行 10.1.7. 删除数据行 10.1.8. 取回查询结果 10.2. Zend_Db_Statement 10.2.1. Creating a Statement 10.2.2. Executing a Statement 10.2.3. Fetching Results from a SELECT Statement 10.2.3.1. Fetching a Single Row from a Result Set 10.2.3.2. Fetching a Complete Result Set 10.2.3.3. Changing the Fetch Mode 10.2.3.4. Fetching a Single Column from a Result Set 10.2.3.5. Fetching a Row as an Object 10.3. Zend_Db_Profiler 10.3.1. Introduction 10.3.2. Using the Profiler 10.3.3. Advanced Profiler Usage 10.3.3.1. Filter by query elapsed time 10.3.3.2. Filter by query type 10.3.3.3. Retrieve profiles by query type 10.4. Zend_Db_Select 10.4.1. 简介 10.4.2. 同一表中查询多列数据 10.4.3. 多表联合查询 10.4.4. WHERE条件 10.4.5. GROUP BY分句 10.4.6. HAVING 条件 10.4.7. ORDER BY 分句 10.4.8. 通过总数和偏移量进行LIMIT限制 10.4.9. 通过页数和总数进行LIMIT限制 10.5. Zend_Db_Table 10.5.1. 简介 10.5.2. 开始 10.5.3. 表名和主键 10.5.4. 插入数据 10.5.5. 更新数据 10.5.6. Deleting Rows 10.5.7. 根据主键查找数据 10.5.8. 取回一条记录 10.5.9. 取回多条记录 10.5.10. Adding Domain Logic 10.6. Zend_Db_Table_Row 10.6.1. 简介 10.6.2. 取回一条记录 10.6.3. 修改数据 10.7. Zend_Db_Table_Rowset 10.7.1. 简介 10.7.2. 取回结果集 10.7.3. 遍历结果集 10.8. Zend_Db_Table Relationships 10.8.1. Introduction 10.8.2. Defining Relationships 10.8.3. Fetching a Dependent Rowset 10.8.4. Fetching a Parent Row 10.8.5. Fetching a Rowset via a Many-to-many Relationship 10.8.6. Cascading Write Operations 10.8.6.1. Notes Regarding Cascading Operations 11. Zend_Debug 11.1. 输出变量的值 (Dumping Variables) 12. Zend_Exception 12.1. 使用“异常” 13. Zend_Feed 13.1. 介绍 13.2. 导入Feeds 13.2.1. 定制 feeds 13.2.1.1. 导入定制的数组 13.2.1.2. 导入定制的数据源 13.2.1.3. Dumping feed 内容 13.3. 从网页上获得Feed 13.4. RSS Feed的使用 13.5. Atom Feed的使用 13.6. 单个Atom条目的处理 13.7. 修改Feed和条目结构 13.8. 自定义Feed和条目类 14. Zend_Filter 14.1. 简介 14.1.1. 什么是过滤器(filter)? 14.1.2. 过滤器的基本用法 14.1.3. 使用静态 get() 方法 14.2. 标准过滤器类 14.2.1. Alnum 14.2.2. Alpha 14.2.3. BaseName 14.2.4. Digits 14.2.5. Dir 14.2.6. HtmlEntities 14.2.7. Int 14.2.8. RealPath 14.2.9. StringToLower 14.2.10. StringToUpper 14.2.11. StringTrim 14.2.12. StripTags 14.3. 过滤器链 14.4. 编写过滤器 14.5. Zend_Filter_Input 14.5.1. Declaring Filter and Validator Rules 14.5.2. Creating the Filter and Validator Processor 14.5.3. Retrieving Validated Fields and other Reports 14.5.3.1. Querying if the input is valid 14.5.3.2. Getting Invalid, Missing, or Unknown Fields 14.5.3.3. Getting Valid Fields 14.5.4. Using Metacommands to Control Filter or Validator Rules 14.5.4.1. The FIELDS metacommand 14.5.4.2. The PRESENCE metacommand 14.5.4.3. The DEFAULT_VALUE metacommand 14.5.4.4. The ALLOW_EMPTY metacommand 14.5.4.5. The BREAK_CHAIN metacommand 14.5.4.6. The MESSAGES metacommand 14.5.4.7. Using options to set metacommands for all rules 14.5.5. Adding Filter Class Namespaces 14.6. Zend_Filter_Inflector 14.6.1. Operation 14.6.2. Setting Paths To Alternate Filters 14.6.3. Setting the Inflector Target 14.6.4. Inflection Rules 14.6.4.1. Static Rules 14.6.4.2. Filter Inflector Rules 14.6.4.3. Setting Many Rules At Once 14.6.5. Utility Methods 14.6.6. Using Zend_Config with Zend_Filter_Inflector 15. Zend_Form 15.1. Zend_Form 15.2. Zend_Form 快速起步 15.2.1. 创建表单对象 15.2.2. 添加表单元素 15.2.3. 解析(Render)表单 15.2.4. 检查表单是否有效 15.2.5. 获得错误状态 15.2.6. 放到一起 15.2.7. 使用 Zend_Config 对象 15.2.8. 结论 15.3. 使用 Zend_Form_Element 生成表单元素 15.3.1. 插件加载器 15.3.2. 过滤器 15.3.3. 校验器 15.3.4. 装饰器 15.3.5. 元数据和属性 15.3.6. 标准元素 15.3.7. Zend_Form_Element 方法 15.3.8. 配置 15.3.9. 定制元素 15.4. 使用 Zend_Form 生成表单 15.4.1. 插件加载器 15.4.2. 元素(Elements) 15.4.2.1. 组装和读取数值 15.4.2.2. 全局操作 15.4.2.3. 和元素交互使用的方法 15.4.3. 显示组(Display Groups) 15.4.3.1. 全局操作 15.4.3.2. 使用定制的显示组类 15.4.3.3. 和显示组交互使用的方法 15.4.3.4. Zend_Form_DisplayGroup 方法 15.4.4. 子表单 15.4.4.1. 全局操作 15.4.4.2. 和子表单交互使用的方法 15.4.5. 元数据(Metadata)和属性(Attributes) 15.4.6. 装饰器 15.4.7. 校验 15.4.8. 方法 15.4.9. 配置 15.4.10. 定制表单 15.5. 使用 Zend_Form_Decorator 生成定制的表单标识(Markup) 15.5.1. 操作 15.5.2. 标准装饰器 15.5.3. 定制装饰器 15.6. Zend Framework 带有的标准表单元素 15.6.1. Zend_Form_Element_Button 15.6.2. Zend_Form_Element_Checkbox 15.6.3. Zend_Form_Element_Hidden 15.6.4. Zend_Form_Element_Hash 15.6.5. Zend_Form_Element_Image 15.6.6. Zend_Form_Element_MultiCheckbox 15.6.7. Zend_Form_Element_Multiselect 15.6.8. Zend_Form_Element_Password 15.6.9. Zend_Form_Element_Radio 15.6.10. Zend_Form_Element_Reset 15.6.11. Zend_Form_Element_Select 15.6.12. Zend_Form_Element_Submit 15.6.13. Zend_Form_Element_Text 15.6.14. Zend_Form_Element_Textarea 15.7. Zend Framework 带有的标准表单装饰器(Decorators) 15.7.1. Zend_Form_Decorator_Callback 15.7.2. Zend_Form_Decorator_Description 15.7.3. Zend_Form_Decorator_DtDdWrapper 15.7.4. Zend_Form_Decorator_Errors 15.7.5. Zend_Form_Decorator_Fieldset 15.7.6. Zend_Form_Decorator_Form 15.7.7. Zend_Form_Decorator_FormElements 15.7.8. Zend_Form_Decorator_HtmlTag 15.7.9. Zend_Form_Decorator_Image 15.7.10. Zend_Form_Decorator_Label 15.7.11. Zend_Form_Decorator_ViewHelper 15.7.12. Zend_Form_Decorator_ViewScript 15.8. Zend_Form 的国际化 15.8.1. 在表单中初始化 I18n 15.8.2. 标准 I18N 目标 15.9. Zend_Form 的高级用法 15.9.1. 数组符号(Notation) 15.9.2. 多页表单 16. Zend_Gdata 16.1. Introduction to Gdata 16.1.1. Structure of Zend_Gdata 16.1.2. Interacting with Google Services 16.1.3. Obtaining instances of Zend_Gdata classes 16.1.4. Google Data Client Authentication 16.1.5. Dependencies 16.1.6. Creating a new Gdata client 16.1.7. Common query parameters 16.1.8. Fetching a feed 16.1.9. Working with multi-page feeds 16.1.10. Working with data in feeds and entries 16.1.11. Updating entries 16.1.12. Posting entries to Google servers 16.1.13. Deleting entries on Google servers 16.2. Authenticating with AuthSub 16.2.1. Creating an AuthSub authenticated Http Client 16.2.2. Revoking AuthSub authentication 16.3. Authenticating with ClientLogin 16.3.1. Creating a ClientLogin authenticated Http Client 16.3.2. Terminating a ClientLogin authenticated Http Client 16.4. Using Google Calendar 16.4.1. Connecting To The Calendar Service 16.4.1.1. Authentication 16.4.1.2. Creating A Service Instance 16.4.2. Retrieving A Calendar List 16.4.3. Retrieving Events 16.4.3.1. Queries 16.4.3.2. Retrieving Events In Order Of Start Time 16.4.3.3. Retrieving Events In A Specified Date Range 16.4.3.4. Retrieving Events By Fulltext Query 16.4.3.5. Retrieving Individual Events 16.4.4. Creating Events 16.4.4.1. Creating Single-Occurrence Events 16.4.4.2. Event Schedules and Reminders 16.4.4.3. Creating Recurring Events 16.4.4.4. Using QuickAdd 16.4.5. Modifying Events 16.4.6. Deleting Events 16.4.7. Accessing Event Comments 16.5. Using Google Documents List Data API 16.5.1. Get a List of Documents 16.5.2. Upload a Document 16.5.3. Searching the documents feed 16.5.3.1. Get a List of Word Processing Documents 16.5.3.2. Get a List of Spreadsheets 16.5.3.3. Performing a text query 16.6. Using Google Spreadsheets 16.6.1. Create a Spreadsheet 16.6.2. Get a List of Spreadsheets 16.6.3. Get a List of Worksheets 16.6.4. Interacting With List-based Feeds 16.6.4.1. Get a List-based Feed 16.6.4.2. Reverse-sort Rows 16.6.4.3. Send a Structured Query 16.6.4.4. Add a Row 16.6.4.5. Edit a Row 16.6.4.6. Delete a Row 16.6.5. Interacting With Cell-based Feeds 16.6.5.1. Get a Cell-based Feed 16.6.5.2. Send a Cell Range Query 16.6.5.3. Change Contents of a Cell 16.7. Using Google Apps Provisioning 16.7.1. Setting the current domain 16.7.1.1. Setting the domain for the service class 16.7.1.2. Setting the domain for query classes 16.7.2. Interacting with users 16.7.2.1. Creating a user account 16.7.2.2. Retrieving a user account 16.7.2.3. Retrieving all users in a domain 16.7.2.4. Updating a user account 16.7.2.4.1. Resetting a user's password 16.7.2.4.2. Forcing a user to change their password 16.7.2.4.3. Suspending a user account 16.7.2.4.4. Granting administrative rights 16.7.2.5. Deleting user accounts 16.7.3. Interacting with nicknames 16.7.3.1. Creating a nickname 16.7.3.2. Retrieving a nickname 16.7.3.3. Retrieving all nicknames for a user 16.7.3.4. Retrieving all nicknames in a domain 16.7.3.5. Deleting a nickname 16.7.4. Interacting with email lists 16.7.4.1. Creating an email list 16.7.4.2. Retrieving all email lists to which a recipient is subscribed 16.7.4.3. Retrieving all email lists in a domain 16.7.4.4. Deleting an email list 16.7.5. Interacting with email list recipients 16.7.5.1. Adding a recipient to an email list 16.7.5.2. Retrieving the list of subscribers to an email list 16.7.5.3. Removing a recipient from an email list 16.7.6. Handling errors 16.8. Using Google Base 16.8.1. Connect To The Base Service 16.8.1.1. Authentication 16.8.1.2. Create A Service Instance 16.8.2. Retrieve Items 16.8.2.1. Send a Structured Query 16.8.2.1.1. Query Customer Items Feed 16.8.2.1.2. Query Snippets Feed 16.8.2.2. Iterate through the Items 16.8.3. Insert, Update, and Delete Customer Items 16.8.3.1. Insert an Item 16.8.3.2. Modify an Item 16.8.3.3. Delete an Item 16.9. Using the YouTube data API 16.9.1. Retrieving video feeds 16.9.1.1. Searching for videos by metadata 16.9.1.2. Searching for videos by categories and tags/keywords 16.9.1.3. Retrieving standard feeds 16.9.1.4. Retrieving videos uploaded by a user 16.9.1.5. Retrieving videos favorited by a user 16.9.1.6. Retrieving video responses for a video 16.9.2. Retrieving video comments 16.9.3. Retrieving playlist feeds 16.9.3.1. Retrieving the playlists of a user 16.9.3.2. Retrieving a specific playlist 16.9.4. Retrieving a list of a user's subscriptions 16.9.5. Retrieving a user's profile 16.10. Using Picasa Web Albums 16.10.1. Connecting To The Service 16.10.1.1. Authentication 16.10.1.2. Creating A Service Instance 16.10.2. Understanding and Constructing Queries 16.10.3. Retrieving Feeds And Entries 16.10.3.1. Retrieving A User 16.10.3.2. Retrieving An Album 16.10.3.3. Retrieving A Photo 16.10.3.4. Retrieving A Comment 16.10.3.5. Retrieving A Tag 16.10.4. Creating Entries 16.10.4.1. Creating An Album 16.10.4.2. Creating A Photo 16.10.4.3. Creating A Comment 16.10.4.4. Creating A Tag 16.10.5. Deleting Entries 16.10.5.1. Deleting An Album 16.10.5.2. Deleting A Photo 16.10.5.3. Deleting A Comment 16.10.5.4. Deleting A Tag 16.10.5.5. Optimistic Concurrency (Notes On Deletion) 16.11. Catching Gdata Exceptions 17. Zend_Http 17.1. Zend_Http_Client 17.1.1. 简介 17.1.2. 带有指定的HTTP头的基本 GET 请求 17.1.3. 发送请求到多个域名 17.1.4. 改变HTTP timeout时间 17.1.5. 动态指定HTTP Header 17.1.6. 构造 HTTP POST, PUT, 和 DELETE 请求 17.2. Zend_Http_Client - Advanced Usage 17.2.1. HTTP Redirections 17.2.2. Adding Cookies and Using Cookie Persistence 17.2.3. Setting Custom Request Headers 17.2.4. File Uploads 17.2.5. Sending Raw POST Data 17.2.6. HTTP Authentication 17.2.7. Sending Multiple Requests With the Same Client 17.3. Zend_Http_Client - Connection Adapters 17.3.1. Overview 17.3.2. The Socket Adapter 17.3.3. The Proxy Adapter 17.3.4. The Test Adapter 17.3.5. Creating your own connection adapters 17.4. Zend_Http_Cookie and Zend_Http_CookieJar 17.4.1. Introduction 17.4.2. Instantiating Zend_Http_Cookie Objects 17.4.3. Zend_Http_Cookie getter methods 17.4.4. Zend_Http_Cookie: Matching against a scenario 17.4.5. The Zend_Http_CookieJar Class: Instantiation 17.4.6. Adding Cookies to a Zend_Http_CookieJar object 17.4.7. Retrieving Cookies From a Zend_Http_CookieJar object 17.5. Zend_Http_Response 17.5.1. 简介 18. Zend_Json 18.1. 简介 18.2. 基本用法 18.3. JSON 对象 18.4. XML 到 JSON 转换 19. Zend_Layout 19.1. 简介 19.2. Zend_Layout 快速入门 19.2.1. 布局脚本 19.2.2. 和Zend Framework MVC一起使用 Zend_Layout 19.2.3. 使用Zend_Layout做为独立的组件 19.2.4. 尝试一下布局 19.3. Zend_Layout 配置选项 19.3.1. 范例 19.4. Zend_Layout 高级用法 19.4.1. 定制视图对象 19.4.2. 定制前端控制器插件 19.4.3. 定制动作助手 19.4.4. 定制布局脚本路径解析(Resolution):使用变形器(Inflector) 20. Zend_Loader 20.1. 动态加载文件和类 20.1.1. 加载文件 20.1.2. 加载类 20.1.3. 判定某个文件是否可读 20.1.4. 使用 Autoloader 20.2. 加载插件 20.2.1. 基本用例 20.2.2. 处理插件路径 20.2.3. 测试插件和获取类的名字 21. Zend_Locale 21.1. Introduction 21.1.1. What is Localization 21.1.2. What is a Locale? 21.1.3. How are Locales Represented? 21.1.4. Selecting the Right Locale 21.1.5. Usage of automatic Locales 21.1.6. Using a default Locale 21.1.7. ZF Locale-Aware Classes 21.1.8. Zend_Locale_Format::setOptions(array $options) 21.1.9. Speed up Zend_Locale and it's subclasses 21.2. Using Zend_Locale 21.2.1. Copying, Cloning, and Serializing Locale Objects 21.2.2. Equality 21.2.3. Default locales 21.2.4. Set a new locale 21.2.5. Getting the language and region 21.2.6. Obtaining localized strings 21.2.7. Obtaining translations for "yes" and "no" 21.2.8. Get a list of all known locales 21.3. Normalization and Localization 21.3.1. Number normalization: getNumber($input, Array $options) 21.3.1.1. Precision and Calculations 21.3.2. Number localization 21.3.3. Number testing 21.3.4. Float value normalization 21.3.5. Floating point value localization 21.3.6. Floating point value testing 21.3.7. Integer value normalization 21.3.8. Integer point value localization 21.3.9. Integer value testing 21.3.10. Numeral System Conversion 21.3.10.1. List of supported numeral systems 21.4. Working with Dates and Times 21.4.1. Normalizing Dates and Times 21.4.2. Testing Dates 21.4.3. Normalizing a Time 21.4.4. Testing Times 21.5. Supported Languages for Locales 21.6. Supported Regions for Locales 22. Zend_Log 22.1. 概述 22.1.1. 创建Log 22.1.2. 日志消息 22.1.3. 销毁Log 22.1.4. 使用内建的消息等级 22.1.5. 添加用户定义的日志等级 22.1.6. 理解日志事件 22.2. Writers 22.2.1. 写入到流(Streams) 22.2.2. 写入到数据库 22.2.3. 踩熄Writer 22.2.4. 测试 Mock 22.2.5. 组合Writers 22.3. Formatters 22.3.1. 简单格式化 22.3.2. 格式化到XML 22.4. 过滤器 22.4.1. 对所有Writer过滤 22.4.2. 过滤一个Writer实例 23. Zend_Mail 23.1. 简介 23.1.1. 起步 23.1.2. 配置缺省的 sendmail 传送器(transport) 23.2. 通过SMTP发送邮件 23.3. 通过一个SMTP连接发送多个邮 23.4. 使用不同的Transport对象 23.5. HTML邮件 23.6. 附件 23.7. 增加收件人 23.8. 控制MIME分界线 23.9. 外加邮件头信息 23.10. 字符集 23.11. 编码 23.12. SMTP 身份验证 23.13. Securing SMTP Transport 23.14. Reading Mail Messages 23.14.1. Simple example using Pop3 23.14.2. Opening a local storage 23.14.3. Opening a remote storage 23.14.4. Fetching messages and simple methods 23.14.5. Working with messages 23.14.6. Checking for flags 23.14.7. Using folders 23.14.8. Advanced Use 23.14.8.1. Using NOOP 23.14.8.2. Caching instances 23.14.8.3. Extending Protocol Classes 23.14.8.4. Using Quota (since 1.5) 24. Zend_Measure 24.1. Introduction 24.2. Creation of Measurements 24.2.1. Creating measurements from integers and floats 24.2.2. Creating measurements from strings 24.2.3. Measurements from localized strings 24.3. Outputting measurements 24.3.1. Automatic output 24.3.2. Outputting values 24.3.3. Output with unit of measurement 24.3.4. Output as localized string 24.4. Manipulating Measurements 24.4.1. Convert 24.4.2. Add and subtract 24.4.3. Compare 24.4.4. Compare 24.4.5. Manually change values 24.4.6. Manually change types 24.5. Types of measurements 24.5.1. Hints for Zend_Measure_Binary 24.5.2. Hints for Zend_Measure_Number 24.5.3. Roman numbers 25. Zend_Memory 25.1. 概述 25.1.1. 简介 25.1.2. 操作原理 25.1.2.1. 内存管理器 25.1.2.2. 内存容器 25.1.2.3. 锁定的内存 25.1.2.4. 可移动内存 25.2. 内存管理器 25.2.1. 创建一个内存管理器 25.2.2. 管理内存对象 25.2.2.1. 创建可移动的对象 25.2.2.2. 创建锁定的对象 25.2.2.3. 销毁对象 25.2.3. 内存管理器设置 25.2.3.1. 内存限制 25.2.3.2. MinSize 25.3. 内存对象 25.3.1. 可移动的 25.3.2. 锁定的 25.3.3. 内存容器 '值' 属性. 25.3.4. 内存容器接口 25.3.4.1. getRef() 方法 25.3.4.2. touch() 方法 25.3.4.3. lock() 方法 25.3.4.4. unlock() 方法 25.3.4.5. isLocked() 方法 26. Zend_Mime 26.1. Zend_Mime 26.1.1. 简介 26.1.2. 静态方法和常量 26.1.3. 实例化Zend_Mime 26.2. Zend_Mime_Message 26.2.1. 简介 26.2.2. 实例化 26.2.3. 增加MIME消息段 26.2.4. 分界线处理 26.2.5. 解析字符串,创建Zend_Mime_Message对象(实验性的) 26.3. Zend_Mime_Part 26.3.1. 简介 26.3.2. 实例化 26.3.3. 解析(rendering)消息段为字符串的方法 27. Zend_Pdf 27.1. 简介 27.2. 生成和加载 PDF 文档 27.3. 保存修改到 PDF 文档 27.4. 文档页面 27.4.1. 页面生成 27.4.2. 页面克隆 27.5. Drawing. 27.5.1. Geometry. 27.5.2. Colors. 27.5.3. Shape Drawing. 27.5.4. Text Drawing. 27.5.5. Using fonts. 27.5.6. Starting in 1.5, Extracting fonts. 27.5.7. Image Drawing. 27.5.8. Line drawing style. 27.5.9. Fill style. 27.5.10. Rotations. 27.5.11. Save/restore graphics state. 27.5.12. Clipping draw area. 27.5.13. Styles. 27.6. Zend_Pdf module usage example. 28. Zend_Registry 28.1. 使用对象注册表(Registry) 28.1.1. 设置Registry中的值 28.1.2. 获取Registry中的值 28.1.3. 创建一个Registry对象 28.1.4. 像访问数组一样访问Registry对象 28.1.5. 对象方式访问Registry 28.1.6. 查询一个索引是否存在 28.1.7. 扩展Registry对象 28.1.8. 删除静态注册表 29. Zend_Rest 29.1. Introduction 29.2. Zend_Rest_Client 29.2.1. Introduction 29.2.2. Responses 29.2.3. Request Arguments 29.3. Zend_Rest_Server 29.3.1. Introduction 29.3.2. REST Server Usage 29.3.3. Calling a Zend_Rest_Server Service 29.3.4. Sending A Custom Status 29.3.5. Returning Custom XML Responses 30. Zend_Search_Lucene 30.1. 概述 30.1.1. 简介 30.1.2. 文档和字段对象 30.1.3. 理解字段类型 30.2. 建立索引 30.2.1. 创建新索引 30.2.2. 更新索引 30.3. 搜索索引 30.3.1. 建立查询 30.3.2. 搜索结果 30.3.3. 结果评分 30.4. Query Language 30.4.1. Terms 30.4.2. Fields 30.4.3. Starting in 1.5, Wildcards 30.4.4. Term Modifiers 30.4.5. Starting in 1.5, Range Searches 30.4.6. Starting in 1.5, Fuzzy Searches 30.4.7. Proximity Searches 30.4.8. Boosting a Term 30.4.9. Boolean Operators 30.4.9.1. AND 30.4.9.2. OR 30.4.9.3. NOT 30.4.9.4. &&, ||, and ! operators 30.4.9.5. + 30.4.9.6. - 30.4.9.7. No Operator 30.4.10. Grouping 30.4.11. Field Grouping 30.4.12. Escaping Special Characters 30.5. 查询类型 30.5.1. 单项查询 30.5.2. 多项查询 30.5.3. 短语查询 30.6. 字符集 30.6.1. UTF-8 和单字节字符集支持 30.7. 扩展性 30.7.1. 文本分析 30.7.2. 评分算法 30.7.3. 存储容器 30.8. 与 Java Lucene 的互操作性 30.8.1. 文件格式 30.8.2. 索引目录 30.8.3. Java 源代码 30.9. Advanced 30.9.1. Using the index as static property 30.10. Best Practices 30.10.1. Field names 30.10.2. Indexing performance 30.10.3. Index during Shut Down 30.10.4. Retrieving documents by unique id 30.10.5. Memory Usage 30.10.6. Encoding 30.10.7. Index maintenance 31. Zend_Server 31.1. 简介 31.2. Zend_Server_Reflection 31.2.1. 简介 31.2.2. 用法 32. Zend_Service 32.1. 简介 32.2. Zend_Service_Akismet 32.2.1. Introduction 32.2.2. Verify an API key 32.2.3. Check for spam 32.2.4. Submitting known spam 32.2.5. Submitting false positives (ham) 32.2.6. Zend-specific Accessor Methods 32.3. Zend_Service_Amazon 32.3.1. Introduction 32.3.2. Country Codes 32.3.3. Looking up a Specific Amazon Item by ASIN 32.3.4. Performing Amazon Item Searches 32.3.5. Using the Alternative Query API 32.3.5.1. Introduction 32.3.6. Zend_Service_Amazon Classes 32.3.6.1. Zend_Service_Amazon_Item 32.3.6.1.1. Zend_Service_Amazon_Item::asXML() 32.3.6.1.2. Properties 32.3.6.2. Zend_Service_Amazon_Image 32.3.6.2.1. Properties 32.3.6.3. Zend_Service_Amazon_ResultSet 32.3.6.3.1. Zend_Service_Amazon_ResultSet::totalResults() 32.3.6.4. Zend_Service_Amazon_OfferSet 32.3.6.4.1. Properties 32.3.6.5. Zend_Service_Amazon_Offer 32.3.6.5.1. Zend_Service_Amazon_Offer Properties 32.3.6.6. Zend_Service_Amazon_SimilarProduct 32.3.6.6.1. Properties 32.3.6.7. Zend_Service_Amazon_Accessories 32.3.6.7.1. Properties 32.3.6.8. Zend_Service_Amazon_CustomerReview 32.3.6.8.1. Properties 32.3.6.9. Zend_Service_Amazon_EditorialReview 32.3.6.9.1. Properties 32.3.6.10. Zend_Service_Amazon_Listmania 32.3.6.10.1. Properties 32.4. Zend_Service_Audioscrobbler 32.4.1. Introduction to Searching Audioscrobbler 32.4.2. Users 32.4.3. Artists 32.4.4. Tracks 32.4.5. Tags 32.4.6. Groups 32.4.7. Forums 32.5. Zend_Service_Delicious 32.5.1. Introduction 32.5.2. Retrieving posts 32.5.3. Zend_Service_Delicious_PostList 32.5.4. Editing posts 32.5.5. Deleting posts 32.5.6. Adding new posts 32.5.7. Tags 32.5.8. Bundles 32.5.9. Public data 32.5.9.1. Public posts 32.5.10. HTTP client 32.6. Zend_Service_Flickr 32.6.1. 对Flickr搜索的介绍 32.6.2. 查找 Flickr 用户 32.6.3. 获得 Flickr 图像详细资料 32.6.4. Zend_Service_Flickr 类 32.6.4.1. Zend_Service_Flickr_ResultSet 32.6.4.1.1. 属性 32.6.4.1.2. Zend_Service_Flickr_ResultSet::totalResults() 32.6.4.2. Zend_Service_Flickr_Result 32.6.4.2.1. 属性 32.6.4.3. Zend_Service_Flickr_Image 32.6.4.3.1. 属性 32.7. Zend_Service_Simpy 32.7.1. Introduction 32.7.2. Links 32.7.3. Tags 32.7.4. Notes 32.7.5. Watchlists 32.8. Zend_Service_StrikeIron 32.8.1. Overview 32.8.2. Registering with StrikeIron 32.8.3. Getting Started 32.8.4. Making Your First Query 32.8.5. Examining Results 32.8.6. Handling Errors 32.8.7. Checking Your Subscription 32.9. Zend_Service_StrikeIron: Bundled Services 32.9.1. ZIP Code Information 32.9.2. U.S. Address Verification 32.9.3. Sales & Use Tax Basic 32.10. Zend_Service_StrikeIron: Advanced Uses 32.10.1. Using Services by WSDL 32.10.2. Viewing SOAP Transactions 32.11. Zend_Service_Yahoo 32.11.1. 简介 32.11.2. 用Yahoo!来搜索网页 32.11.3. 用Yahoo!来查找图片 32.11.4. Finding Local Businesses and Services with Yahoo! 32.11.5. 搜索Yahoo! 新闻 32.11.6. Zend_Service_Yahoo 类 32.11.6.1. Zend_Service_Yahoo_ResultSet 32.11.6.1.1. Zend_Service_Yahoo_ResultSet::totalResults() 32.11.6.1.2. Properties 32.11.6.2. Zend_Service_Yahoo_WebResultSet 32.11.6.3. Zend_Service_Yahoo_ImageResultSet 32.11.6.4. Zend_Service_Yahoo_LocalResultSet 32.11.6.5. Zend_Service_Yahoo_NewsResultSet 32.11.6.6. Zend_Service_Yahoo_Result 32.11.6.6.1. Properties 32.11.6.7. Zend_Service_Yahoo_WebResult 32.11.6.7.1. 属性 32.11.6.8. Zend_Service_Yahoo_ImageResult 32.11.6.8.1. 属性 32.11.6.9. Zend_Service_Yahoo_LocalResult 32.11.6.9.1. 属性 32.11.6.10. Zend_Service_Yahoo_NewsResult 32.11.6.10.1. 属性 32.11.6.11. Zend_Service_Yahoo_Image 32.11.6.11.1. Properties 33. Zend_Session 33.1. 简介 33.2. 基本用法 33.2.1. 实例教程 33.2.2. 迭代会话命名空间 33.2.3. 会话命名空间的访问器 33.3. 高级用法 33.3.1. 开启会话 33.3.2. 锁住会话命名空间 33.3.3. 命名空间过期 33.3.4. 会话封装和控制器 33.3.5. 防止每个命名空间有多重实例 33.3.6. 使用数组 33.3.7. 在对象中使用会话 33.3.8. 在单元测试中使用会话 33.4. 全局会话管理 33.4.1. 配置选项 33.4.2. 错误:Headers Already Sent 33.4.3. 会话标识符 33.4.3.1. 会话劫持和会话固定 33.4.4. rememberMe(integer $seconds) 33.4.5. forgetMe() 33.4.6. sessionExists() 33.4.7. destroy(bool $remove_cookie = true, bool $readonly = true) 33.4.8. stop() 33.4.9. writeClose($readonly = true) 33.4.10. expireSessionCookie() 33.4.11. setSaveHandler(Zend_Session_SaveHandler_Interface $interface) 33.4.12. namespaceIsset($namespace) 33.4.13. namespaceUnset($namespace) 33.4.14. namespaceGet($namespace) 33.4.15. getIterator() 34. Zend_Translate 34.1. 简介 34.1.1. 开始多语言化 34.2. Zend_Translate适配器 34.2.1. 如何判断使用哪种翻译适配器 34.2.1.1. Zend_Translate_Adapter_Array 34.2.1.2. Zend_Translate_Adapter_Csv 34.2.1.3. Zend_Translate_Adapter_Gettext 34.2.1.4. Zend_Translate_Adapter_Tbx 34.2.1.5. Zend_Translate_Adapter_Tmx 34.2.1.6. Zend_Translate_Adapter_Qt 34.2.1.7. Zend_Translate_Adapter_Xliff 34.2.1.8. Zend_Translate_Adapter_XmlTm 34.2.2. 集成编写自己的适配器 34.2.3. 加速所有的适配器 34.3. Using Translation Adapters 34.3.1. Translation Source Structures 34.3.2. Creating array source files 34.3.3. Creating Gettext Source Files 34.3.4. Creating TMX Source Files 34.3.5. Creating CSV Source Files 34.3.6. Options for adapters 34.3.7. Handling languages 34.3.7.1. Automatically handling of languages 34.3.8. Automatic source detection 34.3.8.1. Language through naming directories 34.3.8.2. Language through filenames 34.3.8.2.1. Complete Filename 34.3.8.2.2. Extension of the file 34.3.8.2.3. Filename tokens 34.3.9. Checking for translations 34.3.10. Access to the source data 35. Zend_Uri 35.1. Zend_Uri 35.1.1. 概述 35.1.2. 新建一个URI 35.1.3. 操作现有的URI 35.1.4. URI 验证 35.1.5. 公共实例方法 35.1.5.1. 取得URI的Schema 35.1.5.2. 取得整个URI 35.1.5.3. 验证URI 36. Zend_Validate 36.1. 简介 36.1.1. 什么是校验器(validator)? 36.1.2. 校验器的基本用法 36.1.3. 定制消息 36.1.4. 使用静态 is() 方法 36.2. 标准校验类 36.2.1. Alnum 36.2.2. Alpha 36.2.3. Barcode 36.2.4. Between 36.2.5. Ccnum 36.2.6. 日期 36.2.7. 数字 36.2.8. Email 地址 36.2.9. 浮点数 36.2.10. GreaterThan 36.2.11. 十六进制数 36.2.12. 主机名 36.2.13. InArray 36.2.14. 整数 36.2.15. Ip 36.2.16. LessThan 36.2.17. NotEmpty 36.2.18. Regex 36.2.19. StringLength 36.3. 校验器链 36.4. 编写校验器 37. Zend_Version 37.1. 读取Zend Framework的当前版本 38. Zend_View 38.1. 简介 38.1.1. 控制器脚本 38.1.2. 视图脚本 38.1.3. 选项 38.1.4. 实用访问器 38.2. 控制器脚本 38.2.1. 变量赋值 38.2.2. 调用视图脚本并打印输出 38.2.3. 视图脚本的路径 38.3. 视图脚本 38.3.1. 转义输出(Escaping Output) 38.3.2. 使用模板系统 38.3.2.1. 使用View脚本的模板系统 38.3.2.2. 通过Zend_View_Interface接口使用模板系统 38.4. 视图助手(View Helper) 38.4.1. 基本的助手 38.4.1.1. 动作视图助手 38.4.1.2. 区域助手(Partial Helper) 38.4.1.3. 占位符助手(Placeholder Helper) 38.4.1.3.1. 具体占位符实现 38.4.1.4. 文档类型助手(Doctype Helper) 38.4.1.5. HeadLink 助手 38.4.1.6. HeadMeta 助手 38.4.1.7. HeadScript 助手 38.4.1.8. HeadStyle 助手 38.4.1.9. HeadTitle 助手 38.4.1.10. InlineScript 助手 38.4.1.11. JSON 助手 38.4.1.12. 翻译助手 38.4.2. 助手的路径 38.4.3. 编写自定义的助手类 39. Zend_XmlRpc 39.1. 介绍 39.2. Zend_XmlRpc_Client 39.2.1. 介绍 39.2.2. 带参数 39.2.2.1. 以PHP本地变量的形式传递参数 39.2.2.2. 以Zend_XmlRpc_Value 对象的形式传递参数 39.2.2.3. 将一个XML字符串解析为XML-RPC参数 39.2.3. 参数类型提示 39.2.4. 获取响应 39.3. Zend_XmlRpc_Server 39.3.1. Introduction 39.3.2. Basic Usage 39.3.3. Server Structure 39.3.4. Conventions 39.3.5. Utilizing Namespaces 39.3.6. Custom Request Objects 39.3.7. Custom Responses 39.3.8. Handling Exceptions via Faults 39.3.9. Caching Server Definitions Between Requests 39.3.10. Usage Examples 39.3.10.1. Basic Usage 39.3.10.2. Attaching a class 39.3.10.3. Attaching several classes using namespaces 39.3.10.4. Specifying exceptions to use as valid fault responses 39.3.10.5. Utilizing a custom request object 39.3.10.6. Utilizing a custom response object 39.3.10.7. Cache server definitions between requests A. 系统需求 A.1. PHP 版本需求 A.2. PHP 扩展 A.3. Zend Framework 组件 B. Zend Framework PHP 编码标准 B.1. 绪论 B.1.1. 适用范围 B.1.2. 目标 B.2. PHP File 文件格式 B.2.1. 常规 B.2.2. 缩进 B.2.3. 行的最大长度 B.2.4. 行结束标志 B.3. 命名约定 B.3.1. 类 B.3.2. 接口 B.3.3. 文件名 B.3.4. 函数和方法 B.3.5. 变量 B.3.6. 常量 B.4. 编码风格 B.4.1. PHP 代码划分(Demarcation) B.4.2. 字符串 B.4.2.1. 字符串文字 B.4.2.2. 包含单引号(')的字符串文字 B.4.2.3. 变量替换 B.4.2.4. 字符串连接 B.4.3. 数组 B.4.3.1. 数字索引数组 Numerically Indexed Arrays B.4.3.2. 关联数组 B.4.4. 类 B.4.4.1. 类的声明 B.4.4.2. 类成员变量 B.4.5. 函数和方法 B.4.5.1. 函数和方方声明 B.4.5.2. 函数和方法的用法 B.4.6. 控制语句 B.4.6.1. If / Else / Elseif B.4.6.2. Switch B.4.7. 注释文档 B.4.7.1. 格式 B.4.7.2. 文件 B.4.7.3. 类 B.4.7.4. 函数 C. 版权信息 索引 表格清单 2.1. 一个CMS范例的访问控制 3.1. 配置选项 4.1. 核心前端选项 4.2. 函数前端选项 4.3. Class frontend options 4.4. File frontend options 4.5. Page frontend options 4.6. 文件后端选项 4.7. Sqlite 后端选项 4.8. Memcached 后端选项 5.1. Zend_Config_Ini 构造器参数 8.1. 选择货币描述的常量 8.2. 选择货币位置的常量 9.1. Date Parts 9.2. Basic Operations 9.3. Date Comparison Methods 9.4. Date Output Methods 9.5. Date Output Methods 9.6. Miscellaneous Methods 9.7. Operations involving Zend_Date::HOUR 9.8. Day Constants 9.9. Week Constants 9.10. Month Constants 9.11. Year Constants 9.12. Time Constants 9.13. Timezone Constants 9.14. Date Format Constants (formats include timezone) 9.15. Date and Time Formats (format varies by locale) 9.16. Constants for ISO 8601 date output 9.17. Constants for PHP date output 9.18. Types of supported horizons for sunset and sunrise 17.1. Zend_Http_Client_Adapter_Socket configuration parameters 17.2. Zend_Http_Client configuration parameters 21.1. Details for getTranslationList($type = null, $locale = null, $value = null) 21.2. Details for getTranslation($value = null, $type = null, $locale = null) 21.3. Differences between ZF 1.0 and ZF 1.5 21.4. Format tokens for self generated number formats 21.5. List of supported numeral systems 21.6. Key values for getDate() with option 'fix_date' 21.7. Return values 21.8. Format definition 21.9. Example formats 21.10. List of all supported languages 21.11. List of all supported regions 23.1. Mail Read Feature Overview 23.2. Mail Folder Names 24.1. List of measurement types 30.1. Zend_Search_Lucene_Field 类型 32.1. Zend_Service_Amazon_Item Properties 32.2. Zend_Service_Amazon_Image Properties 32.3. Zend_Service_Amazon_OfferSet Properties 32.4. Properties 32.5. Zend_Service_Amazon_SimilarProduct Properties 32.6. Zend_Service_Amazon_Accessories Properties 32.7. Zend_Service_Amazon_CustomerReview Properties 32.8. Zend_Service_Amazon_EditorialReview Properties 32.9. Zend_Service_Amazon_Listmania Properties 32.10. Methods for retrieving public data 32.11. Methods of the Zend_Service_Delicious_SimplePost class 32.12. Zend_Service_Flickr_ResultSet 属性 32.13. Zend_Service_Flickr_Result 属性 32.14. Zend_Service_Flickr_Image 属性 32.15. Zend_Service_Yahoo_ResultSet 32.16. Zend_Service_Yahoo_LocalResultSet 属性 32.17. Zend_Service_Yahoo_Result Properties 32.18. Zend_Service_Yahoo_WebResult 属性 32.19. Zend_Service_Yahoo_ImageResult 属性 32.20. Zend_Service_Yahoo_LocalResult 属性 32.21. Zend_Service_Yahoo_NewsResult 属性 32.22. Zend_Service_Yahoo_Image Properties 34.1. Zend_Translate适配器 34.2. Options for Translation Adapters 39.1. PHP本地变量类型转化为XML-RPC类型 39.2. Zend_XmlRpc_Value 对象声明的XML-RPC类型 A.1. Zend Framework 使用的 PHP 扩展 A.2. Zend Framework 组件以及其使用到的 PHP 扩展 范例清单 2.1. 角色之间的多重继承 3.1. 修改 Session 名字空间 3.2. 使用定制存储类 3.3. 基本用法 4.1. 调用 Zend_Cache::factory()取得一个前端 4.2. Caching a database query result 4.3. 用Zend_Cache 输出前端缓存输出 5.1. 使用 Zend_Config 本身 5.2. Using Zend_Config with a PHP Configuration File 5.3. 使用 Zend_Config_Ini 5.4. 使用Zend_Config_Xml 6.1. 使用短语法 6.2. 使用长语法 6.3. 捕捉 Getopt 异常 6.4. 使用 getOption() 6.5. 使用 __get() 和 __isset() 魔术方法 6.6. 使用 getRemainingArgs() 6.7. 使用 addRules() 6.8. 使用 setHelp() 6.9. 使用 setAliases() 6.10. 使用 addArguments() 和 setArguments() 6.11. 使用 setOption() 6.12. 使用 setOptions() 7.1. 如何处理不存在的动作 7.2. 用动作、控制器和模块名来添加一个任务 7.3. 使用请求对象添加一个任务 7.4. AutoCompletion with Dojo Using Zend MVC 7.5. 允许动作响应 Ajax 的请求 7.6. 设定选项 7.7. 使用默认设定 7.8. 使用goto()的_forward()API 7.9. 通过gotoRoute()使用路由组装(route assembly) 7.10. 基本用法 7.11. 禁用自动解析 7.12. 选择另外的视图脚本 7.13. 修改注册的视图Modifying the registered view 7.14. 修改路径规则 7.15. 一个动作中解析多个视图脚本 7.16. Standard usage 7.17. Setting a different error handler 7.18. Using accessors 8.1. 从实际地方创建 Zend_Currency 的实例 8.2. 创建 Zend_Currency 实例的其它例子 8.3. 为货币创建输出 8.4. 修改货币的显示格式 8.5. 从货币中获取信息 8.6. 设置新地方 8.7. 缓存货币 9.1. Setting a default timezone 9.2. Creating the current date 9.3. get() - output a date 9.4. set() - set a date 9.5. add() - adding dates 9.6. compare() - compare dates 9.7. equals() - identify a date or date part 9.8. User-specified input date format 9.9. Operating on Parts of Dates 9.10. Date creation by instance 9.11. Static date creation 9.12. Quick creation of dates from database date values 9.13. Convenient creation of dates from database date values 9.14. Date creation by array 9.15. Example usage for self-defined ISO formats 9.16. Example usage for self-defined formats with PHP specifier 9.17. Checking dates 9.18. Getting all available cities 9.19. Getting the location for a city 9.20. Calculating sun informations 9.21. Working with timezones 9.22. Multiple timezones 10.1. Creating a SQL statement object with query() 10.2. Using a SQL statement constructor 10.3. Executing a statement with positional parameters 10.4. Executing a statement with named parameters 10.5. Using fetch() in a loop 10.6. Using fetchAll() 10.7. Setting the fetch mode 10.8. Using fetchColumn() 10.9. Using fetchObject() 10.10. Fetching a Dependent Rowset 10.11. Fetching a Dependent Rowset By a Specific Rule 10.12. Fetching a Dependent Rowset using a Zend_Db_Table_Select 10.13. Fetching Dependent Rowsets using the Magic Method 10.14. Fetching the Parent Row 10.15. Fetching a Parent Row By a Specific Rule 10.16. Fetching the Parent Row using the Magic Method 10.17. Fetching a Rowset with the Many-to-many Method 10.18. Fetching a Rowset with the Many-to-many Method By a Specific Rule 10.19. Fetching Rowsets using the Magic Many-to-many Method 10.20. Example of a Cascading Delete 10.21. Example Declaration of Cascading Operations 11.1. dump()方法使用示例 12.1. 捕捉一个异常的例子 13.1. 用Zend_Feed来处理RSS Feed数据 13.2. Atom Feed的基本用法 13.3. 读取Atom Feed的单个条目 13.4. 用条目对象直接访问Atom Feed的单个条目 13.5. 修改一个已存在的条目 13.6. 用自定义的命名空间创建一个Atom条目元素 13.7. 用自定义的命名空间继承Atom条目类 14.1. Transforming CamelCaseText to another format 14.2. Setting Multiple Rules at Once 14.3. Using Zend_Config with Zend_Filter_Inflector 15.1. 定制标签 15.2. 为所有元素设置前缀路径 15.3. 为所有元素设置装饰器(Decorators) 15.4. 为所有元素设置过滤器 15.5. 为所有的显示组设置装饰器前缀路径 15.6. 为所有显示组设置装饰器 15.7. 注册表单示例 17.1. 执行一个基本的 GET 请求 17.2. 创建一个基本的Zend_Http_Client 17.3. 发送多条header信息 17.4. 发送请求到多个域名 17.5. 用Zend_Http_Client发送POST 数据 17.6. Forcing RFC 2616 Strict Redirections on 301 and 302 Responses 17.7. Setting Cookies Using setCookie() 17.8. Enabling Cookie Stickiness 17.9. Setting A Single Custom Request Header 17.10. Setting Multiple Custom Request Headers 17.11. Using setFileUpload to Upload Files 17.12. Sending Raw POST Data 17.13. Setting HTTP Authentication User and Password 17.14. Performing consecutive requests with one client 17.15. Changing the HTTPS transport layer 17.16. Using Zend_Http_Client behind a proxy server 17.17. Testing Against a Single HTTP Response Stub 17.18. Testing Against Multiple HTTP Response Stubs 17.19. Creating your own connection adapter 17.20. Instantiating a Zend_Http_Cookie object 17.21. Stringifying a Zend_Http_Cookie object 17.22. Using getter methods with Zend_Http_Cookie 17.23. Matching cookies 17.24. 处理HTTP应答 19.1. 传递选项给构造器或startMvc() 19.2. 使用setOption() 和 setConfig() 19.3. 使用访问器 19.4. 使用Zend_Layout访问器来修改变形器(inflector) 19.5. Zend_Layout 变形器的直接修改 19.6. 定制变形器(inflectors) 20.1. loadFile() 方法范例 20.2. Example of loadClass() method 20.3. isReadable()示例: 20.4. 注册 autoloader callback 方法范例 20.5. 从继承类注册 autoload callback 方法范例 21.1. Choosing a specific locale 21.2. Automatically selecting a locale 21.3. Using automatic locales 21.4. Handling locale exceptions 21.5. Setting a default locale 21.6. Dates default to correct locale of web users 21.7. Overriding default locale selection 21.8. Performance optimization when using a default locale 21.9. Dates default to correct locale of web users 21.10. Using STANDARD definitions for setOptions() 21.11. clone 21.12. Check for equal locales 21.13. Get default locales 21.14. setLocale 21.15. getLanguage and getRegion 21.16. getTranslationList 21.17. getTranslationList 21.18. Converting country name in one language to another 21.19. All available translations 21.20. All Languages written in their native language 21.21. getQuestion() 21.22. getLocaleList() 21.23. Number normalization 21.24. Number normalization with precision 21.25. Number localization 21.26. Number localization with precision 21.27. Using a self defined number format 21.28. Number testing 21.29. Floating point value normalization 21.30. Floating point value localization 21.31. Floating point value testing 21.32. Integer value normalization 21.33. Integer value localization 21.34. Integer value testing 21.35. Converting numerals from Eastern Arabic scripts to European/Latin scripts 21.36. Converting numerals from Latin script to Eastern Arabic script 21.37. Getting 4 letter CLDR script code using a native-language name of the script 21.38. Normalizing a date 21.39. Normalizing a date by locale 21.40. Normalizing a date with time 21.41. Normalizing a userdefined date 21.42. Automatic correction of input dates 21.43. Date testing 21.44. Normalize an unknown time 21.45. Testing a time 23.1. 使用Zend_Mail发送简单邮件 23.2. 传递另外的参数给 Zend_Mail_Transport_Sendmail 传送器 23.3. 通过 SMTP 发送邮件 23.4. 通过一个SMTP连接发送多个邮件 23.5. 手工控制传送器连接 23.6. 使用不同的Transport对象 23.7. 发送HTML邮件 23.8. 带附件的邮件 23.9. 更改MIME分界线 23.10. 外加邮件头信息 23.11. 在 Zend_Mail_Transport_Smtp 中使用身份验证 23.12. Enabling a secure connection within Zend_Mail_Transport_Smtp 24.1. Converting measurements 24.2. The meter measurement 24.3. Creation using integer and floating values 24.4. Creation using strings 24.5. Arbitrary text input containing measurements 24.6. Localized string 24.7. Automatic output 24.8. Output a value 24.9. Outputting units 24.10. Convert 24.11. Adding units 24.12. Subtract 24.13. Different measurements 24.14. Identical measurements 24.15. Difference 24.16. Changing a value 24.17. Changing the type 25.1. 使用 Zend_Memory 组件 27.1. 生成新的或加载 PDF 文档 27.2. 请求 PDF 文档的指定版本 27.3. Save PDF document. 27.4. PDF 文档页面管理 27.5. Cloning existing page. 27.6. Draw a string on the page. 27.7. Draw a UTF-8-encoded string on the page. 27.8. Create a standard font. 27.9. Create a TrueType font. 27.10. Create a TrueType font, but do not embed it in the PDF document. 27.11. Do not throw an exception for fonts that cannot be embeded. 27.12. Do not compress an embedded font. 27.13. Combining font embedding options. 27.14. Extracting fonts from a loaded document. 27.15. Extracting font from a loaded document by specifying font name. 27.16. Image drawing. 27.17. Zend_Pdf module usage demo. 28.1. set() 使用示例: 28.2. get() 方法示例: 28.3. 迭代一个registry对象: 28.4. 创建一个registry对象 28.5. Example of initializing the static registry 28.6. array 方式访问示例: 28.7. 对象形式的访问: 28.8. isRegistered() 示例: 28.9. isset() 示例: 28.10. 指定静态注册表的类名: 28.11. _unsetInstance() 示例: 29.1. A basic REST request 29.2. Response Status 29.3. Using Technorati's Rest Service 29.4. Example Technorati Response 29.5. Setting Request Arguments 29.6. Basic Zend_Rest_Server Usage - Classes 29.7. Basic Zend_Rest_Server Usage - Functions 29.8. Returning Custom Status 29.9. Return Custom XML 30.1. 自定义文本分析程序 32.1. isSpam() Usage 32.2. submitSpam() Usage 32.3. submitHam() Usage 32.4. Search Amazon Using the Traditional API 32.5. Search Amazon Using the Query API 32.6. Choosing an Amazon Web Service Country 32.7. Looking up a Specific Amazon Item by ASIN 32.8. Performing Amazon Item Searches 32.9. Using the ResponseGroup Option 32.10. Search Amazon Using the Alternative Query API 32.11. Retrieving User Profile Information 32.12. Retrieving a User's Weekly Artist Chart 32.13. Retrieving Related Artists 32.14. Get all posts 32.15. Accessing post lists 32.16. Filtering a Post List with Specific Tags 32.17. Filtering a Post List by URL 32.18. Post editing 32.19. Method call chaining 32.20. Deleting posts 32.21. Adding a post 32.22. Tags 32.23. Bundles 32.24. Retrieving public data 32.25. Changing the HTTP client of Zend_Rest_Client 32.26. Configuring your HTTP client to keep connections alive 32.27. 简单的 Flickr 照片搜索 32.28. 用email地址来查找Flickr用户 32.29. 获得 Flickr 图像详细资料 32.30. Querying Links 32.31. Modifying Links 32.32. Working With Tags 32.33. Working With Notes 32.34. Retrieving Watchlists 32.35. 用Yahoo!来搜索网页 32.36. 用Yahoo!来查找图片 32.37. 用Yahoo!查找本地商务和服务信息 32.38. 搜索Yahoo! 新闻 33.1. 页面浏览计数 33.2. 新方法: 使用命名空间避免冲突 33.3. 老方法: PHP会话访问 33.4. 会话迭代 33.5. 访问会话数据 33.6. 开启全局会话 33.7. 锁住会话命名空间 33.8. 过期的例子 33.9. 带有生命期的控制器命名空间会话 33.10. 限制命名空间访问单一实例 33.11. 修改带有会话命名空间的数组数据 33.12. 在会话存储之前构造数组 33.13. 方案:重新分配一个被修改的数组 33.14. 方案:存储包括引用的数组 33.15. PHPUnit Testing Code Dependent on Zend_Session 33.16. 使用Zend_Config配置Zend_Session 33.17. 会话固定 34.1. Example of single-language PHP code 34.2. Example of multi-lingual PHP code 34.3. Example TMX file 34.4. Example CSV file 34.5. Example CSV file two 34.6. Using translation options 34.7. Handling languages with adapters 34.8. How automatically language detection works 34.9. Scanning a directory structure for sources 34.10. Directory scanning for languages 34.11. Filename scanning for languages 34.12. Checking if a text is translatable 34.13. Handling languages with adapters 35.1. 使用Zend_Uri::factory()创建一个新的URI 35.2. 使用Zend_Uri::factory()操作一个现有的URI 35.3. 使用Zend_Uri::check()进行URI 验证 35.4. 从Zend_Uri_* 对象取得模式 35.5. 从一个Zend_Uri_* 对象取得整个URI 35.6. 验证一个 Zend_Uri_* 对象 36.1. 创建简单校验类 36.2. 编写有独立条件的校验类 36.3. 带有独立条件、多重失败原因的校验 37.1. compareVersion()方法示例: 38.1. 动作视图助手的基本用法 38.2. Partials 的基本用法 38.3. 使用 PartialLoop 来解析可迭代的(Iterable)的模型 38.4. 在其它模块中解析 Partials 38.5. 占位符的基本用法 38.6. 用占位符来聚合内容 38.7. 使用占位符(Placeholders)来抓取内容 38.8. Doctype 助手的基本用法 38.9. 获取 Doctype 38.10. HeadLink 助手的基本用法 38.11. HeadMeta 助手基本用法 38.12. HeadScript 助手基本用法 38.13. Capturing Scripts Using the HeadScript Helper 38.14. HeadStyle 助手的基本用法 38.15. 用 HeadStyle 助手抓取样式声明 38.16. HeadTitle 助手基本用法 38.17. 已注册的实例 38.18. 在视图里 38.19. 直接用法 38.20. 单个参数 38.21. 参数列表 38.22. 参数数组 38.23. 动态修改地点 (locale) 38.24. 静态修改地点 (locale) 38.25. 获得当前设置的地点 39.1. 一个基本的XML-RPC请求 39.2. 用类型提示来调用一个XML-RPC服务
Table of Contents Header Files The #define Guard Header File Dependencies Inline Functions The -inl.h Files Function Parameter Ordering Names and Order of Includes Scoping Namespaces Nested Classes Nonmember, Static Member, and Global Functions Local Variables Static and Global Variables Classes Doing Work in Constructors Default Constructors Explicit Constructors Copy Constructors Structs vs. Classes Inheritance Multiple Inheritance Interfaces Operator Overloading Access Control Declaration Order Write Short Functions Google-Specific Magic Smart Pointers cpplint Other C++ Features Reference Arguments Function Overloading Default Arguments Variable-Length Arrays and alloca() Friends Exceptions Run-Time Type Information (RTTI) Casting Streams Preincrement and Predecrement Use of const Integer Types 64-bit Portability Preprocessor Macros 0 and NULL sizeof Boost C++0x Naming General Naming Rules File Names Type Names Variable Names Constant Names Function Names Namespace Names Enumerator Names Macro Names Exceptions to Naming Rules Comments Comment Style File Comments Class Comments Function Comments Variable Comments Implementation Comments Punctuation, Spelling and Grammar TODO Comments Deprecation Comments Formatting Line Length Non-ASCII Characters Spaces vs. Tabs Function Declarations and Definitions Function Calls Conditionals Loops and Switch Statements Pointer and Reference Expressions Boolean Expressions Return Values Variable and Array Initialization Preprocessor Directives Class Format Constructor Initializer Lists Namespace Formatting Horizontal Whitespace Vertical Whitespace Exceptions to the Rules Existing Non-conformant Code Windows Code Important Note Displaying Hidden Details in this Guide link ▶This style guide contains many details that are initially hidden from view. They are marked by the triangle icon, which you see here on your left. Click it now. You should see "Hooray" appear below. Hooray! Now you know you can expand points to get more details. Alternatively, there's an "expand all" at the top of this document. Background C++ is the main development language used by many of Google's open-source projects. As every C++ programmer knows, the language has many powerful features, but this power brings with it complexity, which in turn can make code more bug-prone and harder to read and maintain. The goal of this guide is to manage this complexity by describing in detail the dos and don'ts of writing C++ code. These rules exist to keep the code base manageable while still allowing coders to use C++ language features productively. Style, also known as readability, is what we call the conventions that govern our C++ code. The term Style is a bit of a misnomer, since these conventions cover far more than just source file formatting. One way in which we keep the code base manageable is by enforcing consistency. It is very important that any programmer be able to look at another's code and quickly understand it. Maintaining a uniform style and following conventions means that we can more easily use "pattern-matching" to infer what various symbols are and what invariants are true about them. Creating common, required idioms and patterns makes code much easier to understand. In some cases there might be good arguments for changing certain style rules, but we nonetheless keep things as they are in order to preserve consistency. Another issue this guide addresses is that of C++ feature bloat. C++ is a huge language with many advanced features. In some cases we constrain, or even ban, use of certain features. We do this to keep code simple and to avoid the various common errors and problems that these features can cause. This guide lists these features and explains why their use is restricted. Open-source projects developed by Google conform to the requirements in this guide. Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the language. Header Files In general, every .cc file should have an associated .h file. There are some common exceptions, such as unittests and small .cc files containing just a main() function. Correct use of header files can make a huge difference to the readability, size and performance of your code. The following rules will guide you through the various pitfalls of using header files. The #define Guard link ▶All header files should have #define guards to prevent multiple inclusion. The format of the symbol name should be ___H_. To guarantee uniqueness, they should be based on the full path in a project's source tree. For example, the file foo/src/bar/baz.h in project foo should have the following guard: #ifndef FOO_BAR_BAZ_H_ #define FOO_BAR_BAZ_H_ ... #endif // FOO_BAR_BAZ_H_ Header File Dependencies link ▶Don't use an #include when a forward declaration would suffice. When you include a header file you introduce a dependency that will cause your code to be recompiled whenever the header file changes. If your header file includes other header files, any change to those files will cause any code that includes your header to be recompiled. Therefore, we prefer to minimize includes, particularly includes of header files in other header files. You can significantly minimize the number of header files you need to include in your own header files by using forward declarations. For example, if your header file uses the File class in ways that do not require access to the declaration of the File class, your header file can just forward declare class File; instead of having to #include "file/base/file.h". How can we use a class Foo in a header file without access to its definition? We can declare data members of type Foo* or Foo&. We can declare (but not define) functions with arguments, and/or return values, of type Foo. (One exception is if an argument Foo or const Foo& has a non-explicit, one-argument constructor, in which case we need the full definition to support automatic type conversion.) We can declare static data members of type Foo. This is because static data members are defined outside the class definition. On the other hand, you must include the header file for Foo if your class subclasses Foo or has a data member of type Foo. Sometimes it makes sense to have pointer (or better, scoped_ptr) members instead of object members. However, this complicates code readability and imposes a performance penalty, so avoid doing this transformation if the only purpose is to minimize includes in header files. Of course, .cc files typically do require the definitions of the classes they use, and usually have to include several header files. Note: If you use a symbol Foo in your source file, you should bring in a definition for Foo yourself, either via an #include or via a forward declaration. Do not depend on the symbol being brought in transitively via headers not directly included. One exception is if Foo is used in myfile.cc, it's ok to #include (or forward-declare) Foo in myfile.h, instead of myfile.cc. Inline Functions link ▶Define functions inline only when they are small, say, 10 lines or less. Definition: You can declare functions in a way that allows the compiler to expand them inline rather than calling them through the usual function call mechanism. Pros: Inlining a function can generate more efficient object code, as long as the inlined function is small. Feel free to inline accessors and mutators, and other short, performance-critical functions. Cons: Overuse of inlining can actually make programs slower. Depending on a function's size, inlining it can cause the code size to increase or decrease. Inlining a very small accessor function will usually decrease code size while inlining a very large function can dramatically increase code size. On modern processors smaller code usually runs faster due to better use of the instruction cache. Decision: A decent rule of thumb is to not inline a function if it is more than 10 lines long. Beware of destructors, which are often longer than they appear because of implicit member- and base-destructor calls! Another useful rule of thumb: it's typically not cost effective to inline functions with loops or switch statements (unless, in the common case, the loop or switch statement is never executed). It is important to know that functions are not always inlined even if they are declared as such; for example, virtual and recursive functions are not normally inlined. Usually recursive functions should not be inline. The main reason for making a virtual function inline is to place its definition in the class, either for convenience or to document its behavior, e.g., for accessors and mutators. The -inl.h Files link ▶You may use file names with a -inl.h suffix to define complex inline functions when needed. The definition of an inline function needs to be in a header file, so that the compiler has the definition available for inlining at the call sites. However, implementation code properly belongs in .cc files, and we do not like to have much actual code in .h files unless there is a readability or performance advantage. If an inline function definition is short, with very little, if any, logic in it, you should put the code in your .h file. For example, accessors and mutators should certainly be inside a class definition. More complex inline functions may also be put in a .h file for the convenience of the implementer and callers, though if this makes the .h file too unwieldy you can instead put that code in a separate -inl.h file. This separates the implementation from the class definition, while still allowing the implementation to be included where necessary. Another use of -inl.h files is for definitions of function templates. This can be used to keep your template definitions easy to read. Do not forget that a -inl.h file requires a #define guard just like any other header file. Function Parameter Ordering link ▶When defining a function, parameter order is: inputs, then outputs. Parameters to C/C++ functions are either input to the function, output from the function, or both. Input parameters are usually values or const references, while output and input/output parameters will be non-const pointers. When ordering function parameters, put all input-only parameters before any output parameters. In particular, do not add new parameters to the end of the function just because they are new; place new input-only parameters before the output parameters. This is not a hard-and-fast rule. Parameters that are both input and output (often classes/structs) muddy the waters, and, as always, consistency with related functions may require you to bend the rule. Names and Order of Includes link ▶Use standard order for readability and to avoid hidden dependencies: C library, C++ library, other libraries' .h, your project's .h. All of a project's header files should be listed as descentants of the project's source directory without use of UNIX directory shortcuts . (the current directory) or .. (the parent directory). For example, google-awesome-project/src/base/logging.h should be included as #include "base/logging.h" In dir/foo.cc, whose main purpose is to implement or test the stuff in dir2/foo2.h, order your includes as follows: dir2/foo2.h (preferred location — see details below). C system files. C++ system files. Other libraries' .h files. Your project's .h files. The preferred ordering reduces hidden dependencies. We want every header file to be compilable on its own. The easiest way to achieve this is to make sure that every one of them is the first .h file #included in some .cc. dir/foo.cc and dir2/foo2.h are often in the same directory (e.g. base/basictypes_test.cc and base/basictypes.h), but can be in different directories too. Within each section it is nice to order the includes alphabetically. For example, the includes in google-awesome-project/src/foo/internal/fooserver.cc might look like this: #include "foo/public/fooserver.h" // Preferred location. #include #include #include #include #include "base/basictypes.h" #include "base/commandlineflags.h" #include "foo/public/bar.h" Scoping Namespaces link ▶Unnamed namespaces in .cc files are encouraged. With named namespaces, choose the name based on the project, and possibly its path. Do not use a using-directive. Definition: Namespaces subdivide the global scope into distinct, named scopes, and so are useful for preventing name collisions in the global scope. Pros: Namespaces provide a (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes. For example, if two different projects have a class Foo in the global scope, these symbols may collide at compile time or at runtime. If each project places their code in a namespace, project1::Foo and project2::Foo are now distinct symbols that do not collide. Cons: Namespaces can be confusing, because they provide an additional (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes. Use of unnamed spaces in header files can easily cause violations of the C++ One Definition Rule (ODR). Decision: Use namespaces according to the policy described below. Unnamed Namespaces Unnamed namespaces are allowed and even encouraged in .cc files, to avoid runtime naming conflicts: namespace { // This is in a .cc file. // The content of a namespace is not indented enum { kUnused, kEOF, kError }; // Commonly used tokens. bool AtEof() { return pos_ == kEOF; } // Uses our namespace's EOF. } // namespace However, file-scope declarations that are associated with a particular class may be declared in that class as types, static data members or static member functions rather than as members of an unnamed namespace. Terminate the unnamed namespace as shown, with a comment // namespace. Do not use unnamed namespaces in .h files. Named Namespaces Named namespaces should be used as follows: Namespaces wrap the entire source file after includes, gflags definitions/declarations, and forward declarations of classes from other namespaces: // In the .h file namespace mynamespace { // All declarations are within the namespace scope. // Notice the lack of indentation. class MyClass { public: ... void Foo(); }; } // namespace mynamespace // In the .cc file namespace mynamespace { // Definition of functions is within scope of the namespace. void MyClass::Foo() { ... } } // namespace mynamespace The typical .cc file might have more complex detail, including the need to reference classes in other namespaces. #include "a.h" DEFINE_bool(someflag, false, "dummy flag"); class C; // Forward declaration of class C in the global namespace. namespace a { class A; } // Forward declaration of a::A. namespace b { ...code for b... // Code goes against the left margin. } // namespace b Do not declare anything in namespace std, not even forward declarations of standard library classes. Declaring entities in namespace std is undefined behavior, i.e., not portable. To declare entities from the standard library, include the appropriate header file. You may not use a using-directive to make all names from a namespace available. // Forbidden -- This pollutes the namespace. using namespace foo; You may use a using-declaration anywhere in a .cc file, and in functions, methods or classes in .h files. // OK in .cc files. // Must be in a function, method or class in .h files. using ::foo::bar; Namespace aliases are allowed anywhere in a .cc file, anywhere inside the named namespace that wraps an entire .h file, and in functions and methods. // Shorten access to some commonly used names in .cc files. namespace fbz = ::foo::bar::baz; // Shorten access to some commonly used names (in a .h file). namespace librarian { // The following alias is available to all files including // this header (in namespace librarian): // alias names should therefore be chosen consistently // within a project. namespace pd_s = ::pipeline_diagnostics::sidetable; inline void my_inline_function() { // namespace alias local to a function (or method). namespace fbz = ::foo::bar::baz; ... } } // namespace librarian Note that an alias in a .h file is visible to everyone #including that file, so public headers (those available outside a project) and headers transitively #included by them, should avoid defining aliases, as part of the general goal of keeping public APIs as small as possible. Nested Classes link ▶Although you may use public nested classes when they are part of an interface, consider a namespace to keep declarations out of the global scope. Definition: A class can define another class within it; this is also called a member class. class Foo { private: // Bar is a member class, nested within Foo. class Bar { ... }; }; Pros: This is useful when the nested (or member) class is only used by the enclosing class; making it a member puts it in the enclosing class scope rather than polluting the outer scope with the class name. Nested classes can be forward declared within the enclosing class and then defined in the .cc file to avoid including the nested class definition in the enclosing class declaration, since the nested class definition is usually only relevant to the implementation. Cons: Nested classes can be forward-declared only within the definition of the enclosing class. Thus, any header file manipulating a Foo::Bar* pointer will have to include the full class declaration for Foo. Decision: Do not make nested classes public unless they are actually part of the interface, e.g., a class that holds a set of options for some method. Nonmember, Static Member, and Global Functions link ▶Prefer nonmember functions within a namespace or static member functions to global functions; use completely global functions rarely. Pros: Nonmember and static member functions can be useful in some situations. Putting nonmember functions in a namespace avoids polluting the global namespace. Cons: Nonmember and static member functions may make more sense as members of a new class, especially if they access external resources or have significant dependencies. Decision: Sometimes it is useful, or even necessary, to define a function not bound to a class instance. Such a function can be either a static member or a nonmember function. Nonmember functions should not depend on external variables, and should nearly always exist in a namespace. Rather than creating classes only to group static member functions which do not share static data, use namespaces instead. Functions defined in the same compilation unit as production classes may introduce unnecessary coupling and link-time dependencies when directly called from other compilation units; static member functions are particularly susceptible to this. Consider extracting a new class, or placing the functions in a namespace possibly in a separate library. If you must define a nonmember function and it is only needed in its .cc file, use an unnamed namespace or static linkage (eg static int Foo() {...}) to limit its scope. Local Variables link ▶Place a function's variables in the narrowest scope possible, and initialize variables in the declaration. C++ allows you to declare variables anywhere in a function. We encourage you to declare them in as local a scope as possible, and as close to the first use as possible. This makes it easier for the reader to find the declaration and see what type the variable is and what it was initialized to. In particular, initialization should be used instead of declaration and assignment, e.g. int i; i = f(); // Bad -- initialization separate from declaration. int j = g(); // Good -- declaration has initialization. Note that gcc implements for (int i = 0; i < 10; ++i) correctly (the scope of i is only the scope of the for loop), so you can then reuse i in another for loop in the same scope. It also correctly scopes declarations in if and while statements, e.g. while (const char* p = strchr(str, '/')) str = p + 1; There is one caveat: if the variable is an object, its constructor is invoked every time it enters scope and is created, and its destructor is invoked every time it goes out of scope. // Inefficient implementation: for (int i = 0; i < 1000000; ++i) { Foo f; // My ctor and dtor get called 1000000 times each. f.DoSomething(i); } It may be more efficient to declare such a variable used in a loop outside that loop: Foo f; // My ctor and dtor get called once each. for (int i = 0; i < 1000000; ++i) { f.DoSomething(i); } Static and Global Variables link ▶Static or global variables of class type are forbidden: they cause hard-to-find bugs due to indeterminate order of construction and destruction. Objects with static storage duration, including global variables, static variables, static class member variables, and function static variables, must be Plain Old Data (POD): only ints, chars, floats, or pointers, or arrays/structs of POD. The order in which class constructors and initializers for static variables are called is only partially specified in C++ and can even change from build to build, which can cause bugs that are difficult to find. Therefore in addition to banning globals of class type, we do not allow static POD variables to be initialized with the result of a function, unless that function (such as getenv(), or getpid()) does not itself depend on any other globals. Likewise, the order in which destructors are called is defined to be the reverse of the order in which the constructors were called. Since constructor order is indeterminate, so is destructor order. For example, at program-end time a static variable might have been destroyed, but code still running -- perhaps in another thread -- tries to access it and fails. Or the destructor for a static 'string' variable might be run prior to the destructor for another variable that contains a reference to that string. As a result we only allow static variables to contain POD data. This rule completely disallows vector (use C arrays instead), or string (use const char []). If you need a static or global variable of a class type, consider initializing a pointer (which will never be freed), from either your main() function or from pthread_once(). Note that this must be a raw pointer, not a "smart" pointer, since the smart pointer's destructor will have the order-of-destructor issue that we are trying to avoid. Classes Classes are the fundamental unit of code in C++. Naturally, we use them extensively. This section lists the main dos and don'ts you should follow when writing a class. Doing Work in Constructors link ▶In general, constructors should merely set member variables to their initial values. Any complex initialization should go in an explicit Init() method. Definition: It is possible to perform initialization in the body of the constructor. Pros: Convenience in typing. No need to worry about whether the class has been initialized or not. Cons: The problems with doing work in constructors are: There is no easy way for constructors to signal errors, short of using exceptions (which are forbidden). If the work fails, we now have an object whose initialization code failed, so it may be an indeterminate state. If the work calls virtual functions, these calls will not get dispatched to the subclass implementations. Future modification to your class can quietly introduce this problem even if your class is not currently subclassed, causing much confusion. If someone creates a global variable of this type (which is against the rules, but still), the constructor code will be called before main(), possibly breaking some implicit assumptions in the constructor code. For instance, gflags will not yet have been initialized. Decision: If your object requires non-trivial initialization, consider having an explicit Init() method. In particular, constructors should not call virtual functions, attempt to raise errors, access potentially uninitialized global variables, etc. Default Constructors link ▶You must define a default constructor if your class defines member variables and has no other constructors. Otherwise the compiler will do it for you, badly. Definition: The default constructor is called when we new a class object with no arguments. It is always called when calling new[] (for arrays). Pros: Initializing structures by default, to hold "impossible" values, makes debugging much easier. Cons: Extra work for you, the code writer. Decision: If your class defines member variables and has no other constructors you must define a default constructor (one that takes no arguments). It should preferably initialize the object in such a way that its internal state is consistent and valid. The reason for this is that if you have no other constructors and do not define a default constructor, the compiler will generate one for you. This compiler generated constructor may not initialize your object sensibly. If your class inherits from an existing class but you add no new member variables, you are not required to have a default constructor. Explicit Constructors link ▶Use the C++ keyword explicit for constructors with one argument. Definition: Normally, if a constructor takes one argument, it can be used as a conversion. For instance, if you define Foo::Foo(string name) and then pass a string to a function that expects a Foo, the constructor will be called to convert the string into a Foo and will pass the Foo to your function for you. This can be convenient but is also a source of trouble when things get converted and new objects created without you meaning them to. Declaring a constructor explicit prevents it from being invoked implicitly as a conversion. Pros: Avoids undesirable conversions. Cons: None. Decision: We require all single argument constructors to be explicit. Always put explicit in front of one-argument constructors in the class definition: explicit Foo(string name); The exception is copy constructors, which, in the rare cases when we allow them, should probably not be explicit. Classes that are intended to be transparent wrappers around other classes are also exceptions. Such exceptions should be clearly marked with comments. Copy Constructors link ▶Provide a copy constructor and assignment operator only when necessary. Otherwise, disable them with DISALLOW_COPY_AND_ASSIGN. Definition: The copy constructor and assignment operator are used to create copies of objects. The copy constructor is implicitly invoked by the compiler in some situations, e.g. passing objects by value. Pros: Copy constructors make it easy to copy objects. STL containers require that all contents be copyable and assignable. Copy constructors can be more efficient than CopyFrom()-style workarounds because they combine construction with copying, the compiler can elide them in some contexts, and they make it easier to avoid heap allocation. Cons: Implicit copying of objects in C++ is a rich source of bugs and of performance problems. It also reduces readability, as it becomes hard to track which objects are being passed around by value as opposed to by reference, and therefore where changes to an object are reflected. Decision: Few classes need to be copyable. Most should have neither a copy constructor nor an assignment operator. In many situations, a pointer or reference will work just as well as a copied value, with better performance. For example, you can pass function parameters by reference or pointer instead of by value, and you can store pointers rather than objects in an STL container. If your class needs to be copyable, prefer providing a copy method, such as CopyFrom() or Clone(), rather than a copy constructor, because such methods cannot be invoked implicitly. If a copy method is insufficient in your situation (e.g. for performance reasons, or because your class needs to be stored by value in an STL container), provide both a copy constructor and assignment operator. If your class does not need a copy constructor or assignment operator, you must explicitly disable them. To do so, add dummy declarations for the copy constructor and assignment operator in the private: section of your class, but do not provide any corresponding definition (so that any attempt to use them results in a link error). For convenience, a DISALLOW_COPY_AND_ASSIGN macro can be used: // A macro to disallow the copy constructor and operator= functions // This should be used in the private: declarations for a class #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&); \ void operator=(const TypeName&) Then, in class Foo: class Foo { public: Foo(int f); ~Foo(); private: DISALLOW_COPY_AND_ASSIGN(Foo); }; Structs vs. Classes link ▶Use a struct only for passive objects that carry data; everything else is a class. The struct and class keywords behave almost identically in C++. We add our own semantic meanings to each keyword, so you should use the appropriate keyword for the data-type you're defining. structs should be used for passive objects that carry data, and may have associated constants, but lack any functionality other than access/setting the data members. The accessing/setting of fields is done by directly accessing the fields rather than through method invocations. Methods should not provide behavior but should only be used to set up the data members, e.g., constructor, destructor, Initialize(), Reset(), Validate(). If more functionality is required, a class is more appropriate. If in doubt, make it a class. For consistency with STL, you can use struct instead of class for functors and traits. Note that member variables in structs and classes have different naming rules. Inheritance link ▶Composition is often more appropriate than inheritance. When using inheritance, make it public. Definition: When a sub-class inherits from a base class, it includes the definitions of all the data and operations that the parent base class defines. In practice, inheritance is used in two major ways in C++: implementation inheritance, in which actual code is inherited by the child, and interface inheritance, in which only method names are inherited. Pros: Implementation inheritance reduces code size by re-using the base class code as it specializes an existing type. Because inheritance is a compile-time declaration, you and the compiler can understand the operation and detect errors. Interface inheritance can be used to programmatically enforce that a class expose a particular API. Again, the compiler can detect errors, in this case, when a class does not define a necessary method of the API. Cons: For implementation inheritance, because the code implementing a sub-class is spread between the base and the sub-class, it can be more difficult to understand an implementation. The sub-class cannot override functions that are not virtual, so the sub-class cannot change implementation. The base class may also define some data members, so that specifies physical layout of the base class. Decision: All inheritance should be public. If you want to do private inheritance, you should be including an instance of the base class as a member instead. Do not overuse implementation inheritance. Composition is often more appropriate. Try to restrict use of inheritance to the "is-a" case: Bar subclasses Foo if it can reasonably be said that Bar "is a kind of" Foo. Make your destructor virtual if necessary. If your class has virtual methods, its destructor should be virtual. Limit the use of protected to those member functions that might need to be accessed from subclasses. Note that data members should be private. When redefining an inherited virtual function, explicitly declare it virtual in the declaration of the derived class. Rationale: If virtual is omitted, the reader has to check all ancestors of the class in question to determine if the function is virtual or not. Multiple Inheritance link ▶Only very rarely is multiple implementation inheritance actually useful. We allow multiple inheritance only when at most one of the base classes has an implementation; all other base classes must be pure interface classes tagged with the Interface suffix. Definition: Multiple inheritance allows a sub-class to have more than one base class. We distinguish between base classes that are pure interfaces and those that have an implementation. Pros: Multiple implementation inheritance may let you re-use even more code than single inheritance (see Inheritance). Cons: Only very rarely is multiple implementation inheritance actually useful. When multiple implementation inheritance seems like the solution, you can usually find a different, more explicit, and cleaner solution. Decision: Multiple inheritance is allowed only when all superclasses, with the possible exception of the first one, are pure interfaces. In order to ensure that they remain pure interfaces, they must end with the Interface suffix. Note: There is an exception to this rule on Windows. Interfaces link ▶Classes that satisfy certain conditions are allowed, but not required, to end with an Interface suffix. Definition: A class is a pure interface if it meets the following requirements: It has only public pure virtual ("= 0") methods and static methods (but see below for destructor). It may not have non-static data members. It need not have any constructors defined. If a constructor is provided, it must take no arguments and it must be protected. If it is a subclass, it may only be derived from classes that satisfy these conditions and are tagged with the Interface suffix. An interface class can never be directly instantiated because of the pure virtual method(s) it declares. To make sure all implementations of the interface can be destroyed correctly, they must also declare a virtual destructor (in an exception to the first rule, this should not be pure). See Stroustrup, The C++ Programming Language, 3rd edition, section 12.4 for details. Pros: Tagging a class with the Interface suffix lets others know that they must not add implemented methods or non static data members. This is particularly important in the case of multiple inheritance. Additionally, the interface concept is already well-understood by Java programmers. Cons: The Interface suffix lengthens the class name, which can make it harder to read and understand. Also, the interface property may be considered an implementation detail that shouldn't be exposed to clients. Decision: A class may end with Interface only if it meets the above requirements. We do not require the converse, however: classes that meet the above requirements are not required to end with Interface. Operator Overloading link ▶Do not overload operators except in rare, special circumstances. Definition: A class can define that operators such as + and / operate on the class as if it were a built-in type. Pros: Can make code appear more intuitive because a class will behave in the same way as built-in types (such as int). Overloaded operators are more playful names for functions that are less-colorfully named, such as Equals() or Add(). For some template functions to work correctly, you may need to define operators. Cons: While operator overloading can make code more intuitive, it has several drawbacks: It can fool our intuition into thinking that expensive operations are cheap, built-in operations. It is much harder to find the call sites for overloaded operators. Searching for Equals() is much easier than searching for relevant invocations of ==. Some operators work on pointers too, making it easy to introduce bugs. Foo + 4 may do one thing, while &Foo + 4 does something totally different. The compiler does not complain for either of these, making this very hard to debug. Overloading also has surprising ramifications. For instance, if a class overloads unary operator&, it cannot safely be forward-declared. Decision: In general, do not overload operators. The assignment operator (operator=), in particular, is insidious and should be avoided. You can define functions like Equals() and CopyFrom() if you need them. Likewise, avoid the dangerous unary operator& at all costs, if there's any possibility the class might be forward-declared. However, there may be rare cases where you need to overload an operator to interoperate with templates or "standard" C++ classes (such as operator<<(ostream&, const T&) for logging). These are acceptable if fully justified, but you should try to avoid these whenever possible. In particular, do not overload operator== or operator< just so that your class can be used as a key in an STL container; instead, you should create equality and comparison functor types when declaring the container. Some of the STL algorithms do require you to overload operator==, and you may do so in these cases, provided you document why. See also Copy Constructors and Function Overloading. Access Control link ▶Make data members private, and provide access to them through accessor functions as needed (for technical reasons, we allow data members of a test fixture class to be protected when using Google Test). Typically a variable would be called foo_ and the accessor function foo(). You may also want a mutator function set_foo(). Exception: static const data members (typically called kFoo) need not be private. The definitions of accessors are usually inlined in the header file. See also Inheritance and Function Names. Declaration Order link ▶Use the specified order of declarations within a class: public: before private:, methods before data members (variables), etc. Your class definition should start with its public: section, followed by its protected: section and then its private: section. If any of these sections are empty, omit them. Within each section, the declarations generally should be in the following order: Typedefs and Enums Constants (static const data members) Constructors Destructor Methods, including static methods Data Members (except static const data members) Friend declarations should always be in the private section, and the DISALLOW_COPY_AND_ASSIGN macro invocation should be at the end of the private: section. It should be the last thing in the class. See Copy Constructors. Method definitions in the corresponding .cc file should be the same as the declaration order, as much as possible. Do not put large method definitions inline in the class definition. Usually, only trivial or performance-critical, and very short, methods may be defined inline. See Inline Functions for more details. Write Short Functions link ▶Prefer small and focused functions. We recognize that long functions are sometimes appropriate, so no hard limit is placed on functions length. If a function exceeds about 40 lines, think about whether it can be broken up without harming the structure of the program. Even if your long function works perfectly now, someone modifying it in a few months may add new behavior. This could result in bugs that are hard to find. Keeping your functions short and simple makes it easier for other people to read and modify your code. You could find long and complicated functions when working with some code. Do not be intimidated by modifying existing code: if working with such a function proves to be difficult, you find that errors are hard to debug, or you want to use a piece of it in several different contexts, consider breaking up the function into smaller and more manageable pieces. Google-Specific Magic There are various tricks and utilities that we use to make C++ code more robust, and various ways we use C++ that may differ from what you see elsewhere. Smart Pointers link ▶If you actually need pointer semantics, scoped_ptr is great. You should only use std::tr1::shared_ptr under very specific conditions, such as when objects need to be held by STL containers. You should never use auto_ptr. "Smart" pointers are objects that act like pointers but have added semantics. When a scoped_ptr is destroyed, for instance, it deletes the object it's pointing to. shared_ptr is the same way, but implements reference-counting so only the last pointer to an object deletes it. Generally speaking, we prefer that we design code with clear object ownership. The clearest object ownership is obtained by using an object directly as a field or local variable, without using pointers at all. On the other extreme, by their very definition, reference counted pointers are owned by nobody. The problem with this design is that it is easy to create circular references or other strange conditions that cause an object to never be deleted. It is also slow to perform atomic operations every time a value is copied or assigned. Although they are not recommended, reference counted pointers are sometimes the simplest and most elegant way to solve a problem. cpplint link ▶Use cpplint.py to detect style errors. cpplint.py is a tool that reads a source file and identifies many style errors. It is not perfect, and has both false positives and false negatives, but it is still a valuable tool. False positives can be ignored by putting // NOLINT at the end of the line. Some projects have instructions on how to run cpplint.py from their project tools. If the project you are contributing to does not, you can download cpplint.py separately. Other C++ Features Reference Arguments link ▶All parameters passed by reference must be labeled const. Definition: In C, if a function needs to modify a variable, the parameter must use a pointer, eg int foo(int *pval). In C++, the function can alternatively declare a reference parameter: int foo(int &val). Pros: Defining a parameter as reference avoids ugly code like (*pval)++. Necessary for some applications like copy constructors. Makes it clear, unlike with pointers, that NULL is not a possible value. Cons: References can be confusing, as they have value syntax but pointer semantics. Decision: Within function parameter lists all references must be const: void Foo(const string &in, string *out); In fact it is a very strong convention in Google code that input arguments are values or const references while output arguments are pointers. Input parameters may be const pointers, but we never allow non-const reference parameters. One case when you might want an input parameter to be a const pointer is if you want to emphasize that the argument is not copied, so it must exist for the lifetime of the object; it is usually best to document this in comments as well. STL adapters such as bind2nd and mem_fun do not permit reference parameters, so you must declare functions with pointer parameters in these cases, too. Function Overloading link ▶Use overloaded functions (including constructors) only if a reader looking at a call site can get a good idea of what is happening without having to first figure out exactly which overload is being called. Definition: You may write a function that takes a const string& and overload it with another that takes const char*. class MyClass { public: void Analyze(const string &text); void Analyze(const char *text, size_t textlen); }; Pros: Overloading can make code more intuitive by allowing an identically-named function to take different arguments. It may be necessary for templatized code, and it can be convenient for Visitors. Cons: If a function is overloaded by the argument types alone, a reader may have to understand C++'s complex matching rules in order to tell what's going on. Also many people are confused by the semantics of inheritance if a derived class overrides only some of the variants of a function. Decision: If you want to overload a function, consider qualifying the name with some information about the arguments, e.g., AppendString(), AppendInt() rather than just Append(). Default Arguments link ▶We do not allow default function parameters, except in a few uncommon situations explained below. Pros: Often you have a function that uses lots of default values, but occasionally you want to override the defaults. Default parameters allow an easy way to do this without having to define many functions for the rare exceptions. Cons: People often figure out how to use an API by looking at existing code that uses it. Default parameters are more difficult to maintain because copy-and-paste from previous code may not reveal all the parameters. Copy-and-pasting of code segments can cause major problems when the default arguments are not appropriate for the new code. Decision: Except as described below, we require all arguments to be explicitly specified, to force programmers to consider the API and the values they are passing for each argument rather than silently accepting defaults they may not be aware of. One specific exception is when default arguments are used to simulate variable-length argument lists. // Support up to 4 params by using a default empty AlphaNum. string StrCat(const AlphaNum &a, const AlphaNum &b = gEmptyAlphaNum, const AlphaNum &c = gEmptyAlphaNum, const AlphaNum &d = gEmptyAlphaNum); Variable-Length Arrays and alloca() link ▶We do not allow variable-length arrays or alloca(). Pros: Variable-length arrays have natural-looking syntax. Both variable-length arrays and alloca() are very efficient. Cons: Variable-length arrays and alloca are not part of Standard C++. More importantly, they allocate a data-dependent amount of stack space that can trigger difficult-to-find memory overwriting bugs: "It ran fine on my machine, but dies mysteriously in production". Decision: Use a safe allocator instead, such as scoped_ptr/scoped_array. Friends link ▶We allow use of friend classes and functions, within reason. Friends should usually be defined in the same file so that the reader does not have to look in another file to find uses of the private members of a class. A common use of friend is to have a FooBuilder class be a friend of Foo so that it can construct the inner state of Foo correctly, without exposing this state to the world. In some cases it may be useful to make a unittest class a friend of the class it tests. Friends extend, but do not break, the encapsulation boundary of a class. In some cases this is better than making a member public when you want to give only one other class access to it. However, most classes should interact with other classes solely through their public members. Exceptions link ▶We do not use C++ exceptions. Pros: Exceptions allow higher levels of an application to decide how to handle "can't happen" failures in deeply nested functions, without the obscuring and error-prone bookkeeping of error codes. Exceptions are used by most other modern languages. Using them in C++ would make it more consistent with Python, Java, and the C++ that others are familiar with. Some third-party C++ libraries use exceptions, and turning them off internally makes it harder to integrate with those libraries. Exceptions are the only way for a constructor to fail. We can simulate this with a factory function or an Init() method, but these require heap allocation or a new "invalid" state, respectively. Exceptions are really handy in testing frameworks. Cons: When you add a throw statement to an existing function, you must examine all of its transitive callers. Either they must make at least the basic exception safety guarantee, or they must never catch the exception and be happy with the program terminating as a result. For instance, if f() calls g() calls h(), and h throws an exception that f catches, g has to be careful or it may not clean up properly. More generally, exceptions make the control flow of programs difficult to evaluate by looking at code: functions may return in places you don't expect. This causes maintainability and debugging difficulties. You can minimize this cost via some rules on how and where exceptions can be used, but at the cost of more that a developer needs to know and understand. Exception safety requires both RAII and different coding practices. Lots of supporting machinery is needed to make writing correct exception-safe code easy. Further, to avoid requiring readers to understand the entire call graph, exception-safe code must isolate logic that writes to persistent state into a "commit" phase. This will have both benefits and costs (perhaps where you're forced to obfuscate code to isolate the commit). Allowing exceptions would force us to always pay those costs even when they're not worth it. Turning on exceptions adds data to each binary produced, increasing compile time (probably slightly) and possibly increasing address space pressure. The availability of exceptions may encourage developers to throw them when they are not appropriate or recover from them when it's not safe to do so. For example, invalid user input should not cause exceptions to be thrown. We would need to make the style guide even longer to document these restrictions! Decision: On their face, the benefits of using exceptions outweigh the costs, especially in new projects. However, for existing code, the introduction of exceptions has implications on all dependent code. If exceptions can be propagated beyond a new project, it also becomes problematic to integrate the new project into existing exception-free code. Because most existing C++ code at Google is not prepared to deal with exceptions, it is comparatively difficult to adopt new code that generates exceptions. Given that Google's existing code is not exception-tolerant, the costs of using exceptions are somewhat greater than the costs in a new project. The conversion process would be slow and error-prone. We don't believe that the available alternatives to exceptions, such as error codes and assertions, introduce a significant burden. Our advice against using exceptions is not predicated on philosophical or moral grounds, but practical ones. Because we'd like to use our open-source projects at Google and it's difficult to do so if those projects use exceptions, we need to advise against exceptions in Google open-source projects as well. Things would probably be different if we had to do it all over again from scratch. There is an exception to this rule (no pun intended) for Windows code. Run-Time Type Information (RTTI) link ▶We do not use Run Time Type Information (RTTI). Definition: RTTI allows a programmer to query the C++ class of an object at run time. Pros: It is useful in some unittests. For example, it is useful in tests of factory classes where the test has to verify that a newly created object has the expected dynamic type. In rare circumstances, it is useful even outside of tests. Cons: A query of type during run-time typically means a design problem. If you need to know the type of an object at runtime, that is often an indication that you should reconsider the design of your class. Decision: Do not use RTTI, except in unittests. If you find yourself in need of writing code that behaves differently based on the class of an object, consider one of the alternatives to querying the type. Virtual methods are the preferred way of executing different code paths depending on a specific subclass type. This puts the work within the object itself. If the work belongs outside the object and instead in some processing code, consider a double-dispatch solution, such as the Visitor design pattern. This allows a facility outside the object itself to determine the type of class using the built-in type system. If you think you truly cannot use those ideas, you may use RTTI. But think twice about it. :-) Then think twice again. Do not hand-implement an RTTI-like workaround. The arguments against RTTI apply just as much to workarounds like class hierarchies with type tags. Casting link ▶Use C++ casts like static_cast(). Do not use other cast formats like int y = (int)x; or int y = int(x);. Definition: C++ introduced a different cast system from C that distinguishes the types of cast operations. Pros: The problem with C casts is the ambiguity of the operation; sometimes you are doing a conversion (e.g., (int)3.5) and sometimes you are doing a cast (e.g., (int)"hello"); C++ casts avoid this. Additionally C++ casts are more visible when searching for them. Cons: The syntax is nasty. Decision: Do not use C-style casts. Instead, use these C++-style casts. Use static_cast as the equivalent of a C-style cast that does value conversion, or when you need to explicitly up-cast a pointer from a class to its superclass. Use const_cast to remove the const qualifier (see const). Use reinterpret_cast to do unsafe conversions of pointer types to and from integer and other pointer types. Use this only if you know what you are doing and you understand the aliasing issues. Do not use dynamic_cast except in test code. If you need to know type information at runtime in this way outside of a unittest, you probably have a design flaw. Streams link ▶Use streams only for logging. Definition: Streams are a replacement for printf() and scanf(). Pros: With streams, you do not need to know the type of the object you are printing. You do not have problems with format strings not matching the argument list. (Though with gcc, you do not have that problem with printf either.) Streams have automatic constructors and destructors that open and close the relevant files. Cons: Streams make it difficult to do functionality like pread(). Some formatting (particularly the common format string idiom %.*s) is difficult if not impossible to do efficiently using streams without using printf-like hacks. Streams do not support operator reordering (the %1s directive), which is helpful for internationalization. Decision: Do not use streams, except where required by a logging interface. Use printf-like routines instead. There are various pros and cons to using streams, but in this case, as in many other cases, consistency trumps the debate. Do not use streams in your code. Extended Discussion There has been debate on this issue, so this explains the reasoning in greater depth. Recall the Only One Way guiding principle: we want to make sure that whenever we do a certain type of I/O, the code looks the same in all those places. Because of this, we do not want to allow users to decide between using streams or using printf plus Read/Write/etc. Instead, we should settle on one or the other. We made an exception for logging because it is a pretty specialized application, and for historical reasons. Proponents of streams have argued that streams are the obvious choice of the two, but the issue is not actually so clear. For every advantage of streams they point out, there is an equivalent disadvantage. The biggest advantage is that you do not need to know the type of the object to be printing. This is a fair point. But, there is a downside: you can easily use the wrong type, and the compiler will not warn you. It is easy to make this kind of mistake without knowing when using streams. cout << this; // Prints the address cout << *this; // Prints the contents The compiler does not generate an error because << has been overloaded. We discourage overloading for just this reason. Some say printf formatting is ugly and hard to read, but streams are often no better. Consider the following two fragments, both with the same typo. Which is easier to discover? cerr << "Error connecting to '" hostname.first << ":" hostname.second << ": " hostname.first, foo->bar()->hostname.second, strerror(errno)); And so on and so forth for any issue you might bring up. (You could argue, "Things would be better with the right wrappers," but if it is true for one scheme, is it not also true for the other? Also, remember the goal is to make the language smaller, not add yet more machinery that someone has to learn.) Either path would yield different advantages and disadvantages, and there is not a clearly superior solution. The simplicity doctrine mandates we settle on one of them though, and the majority decision was on printf + read/write. Preincrement and Predecrement link ▶Use prefix form (++i) of the increment and decrement operators with iterators and other template objects. Definition: When a variable is incremented (++i or i++) or decremented (--i or i--) and the value of the expression is not used, one must decide whether to preincrement (decrement) or postincrement (decrement). Pros: When the return value is ignored, the "pre" form (++i) is never less efficient than the "post" form (i++), and is often more efficient. This is because post-increment (or decrement) requires a copy of i to be made, which is the value of the expression. If i is an iterator or other non-scalar type, copying i could be expensive. Since the two types of increment behave the same when the value is ignored, why not just always pre-increment? Cons: The tradition developed, in C, of using post-increment when the expression value is not used, especially in for loops. Some find post-increment easier to read, since the "subject" (i) precedes the "verb" (++), just like in English. Decision: For simple scalar (non-object) values there is no reason to prefer one form and we allow either. For iterators and other template types, use pre-increment. Use of const link ▶We strongly recommend that you use const whenever it makes sense to do so. Definition: Declared variables and parameters can be preceded by the keyword const to indicate the variables are not changed (e.g., const int foo). Class functions can have the const qualifier to indicate the function does not change the state of the class member variables (e.g., class Foo { int Bar(char c) const; };). Pros: Easier for people to understand how variables are being used. Allows the compiler to do better type checking, and, conceivably, generate better code. Helps people convince themselves of program correctness because they know the functions they call are limited in how they can modify your variables. Helps people know what functions are safe to use without locks in multi-threaded programs. Cons: const is viral: if you pass a const variable to a function, that function must have const in its prototype (or the variable will need a const_cast). This can be a particular problem when calling library functions. Decision: const variables, data members, methods and arguments add a level of compile-time type checking; it is better to detect errors as soon as possible. Therefore we strongly recommend that you use const whenever it makes sense to do so: If a function does not modify an argument passed by reference or by pointer, that argument should be const. Declare methods to be const whenever possible. Accessors should almost always be const. Other methods should be const if they do not modify any data members, do not call any non-const methods, and do not return a non-const pointer or non-const reference to a data member. Consider making data members const whenever they do not need to be modified after construction. However, do not go crazy with const. Something like const int * const * const x; is likely overkill, even if it accurately describes how const x is. Focus on what's really useful to know: in this case, const int** x is probably sufficient. The mutable keyword is allowed but is unsafe when used with threads, so thread safety should be carefully considered first. Where to put the const Some people favor the form int const *foo to const int* foo. They argue that this is more readable because it's more consistent: it keeps the rule that const always follows the object it's describing. However, this consistency argument doesn't apply in this case, because the "don't go crazy" dictum eliminates most of the uses you'd have to be consistent with. Putting the const first is arguably more readable, since it follows English in putting the "adjective" (const) before the "noun" (int). That said, while we encourage putting const first, we do not require it. But be consistent with the code around you! Integer Types link ▶Of the built-in C++ integer types, the only one used is int. If a program needs a variable of a different size, use a precise-width integer type from , such as int16_t. Definition: C++ does not specify the sizes of its integer types. Typically people assume that short is 16 bits, int is 32 bits, long is 32 bits and long long is 64 bits. Pros: Uniformity of declaration. Cons: The sizes of integral types in C++ can vary based on compiler and architecture. Decision: defines types like int16_t, uint32_t, int64_t, etc. You should always use those in preference to short, unsigned long long and the like, when you need a guarantee on the size of an integer. Of the C integer types, only int should be used. When appropriate, you are welcome to use standard types like size_t and ptrdiff_t. We use int very often, for integers we know are not going to be too big, e.g., loop counters. Use plain old int for such things. You should assume that an int is at least 32 bits, but don't assume that it has more than 32 bits. If you need a 64-bit integer type, use int64_t or uint64_t. For integers we know can be "big", use int64_t. You should not use the unsigned integer types such as uint32_t, unless the quantity you are representing is really a bit pattern rather than a number, or unless you need defined twos-complement overflow. In particular, do not use unsigned types to say a number will never be negative. Instead, use assertions for this. On Unsigned Integers Some people, including some textbook authors, recommend using unsigned types to represent numbers that are never negative. This is intended as a form of self-documentation. However, in C, the advantages of such documentation are outweighed by the real bugs it can introduce. Consider: for (unsigned int i = foo.Length()-1; i >= 0; --i) ... This code will never terminate! Sometimes gcc will notice this bug and warn you, but often it will not. Equally bad bugs can occur when comparing signed and unsigned variables. Basically, C's type-promotion scheme causes unsigned types to behave differently than one might expect. So, document that a variable is non-negative using assertions. Don't use an unsigned type. 64-bit Portability link ▶Code should be 64-bit and 32-bit friendly. Bear in mind problems of printing, comparisons, and structure alignment. printf() specifiers for some types are not cleanly portable between 32-bit and 64-bit systems. C99 defines some portable format specifiers. Unfortunately, MSVC 7.1 does not understand some of these specifiers and the standard is missing a few, so we have to define our own ugly versions in some cases (in the style of the standard include file inttypes.h): // printf macros for size_t, in the style of inttypes.h #ifdef _LP64 #define __PRIS_PREFIX "z" #else #define __PRIS_PREFIX #endif // Use these macros after a % in a printf format string // to get correct 32/64 bit behavior, like this: // size_t size = records.size(); // printf("%"PRIuS"\n", size); #define PRIdS __PRIS_PREFIX "d" #define PRIxS __PRIS_PREFIX "x" #define PRIuS __PRIS_PREFIX "u" #define PRIXS __PRIS_PREFIX "X" #define PRIoS __PRIS_PREFIX "o" Type DO NOT use DO use Notes void * (or any pointer) %lx %p int64_t %qd, %lld %"PRId64" uint64_t %qu, %llu, %llx %"PRIu64", %"PRIx64" size_t %u %"PRIuS", %"PRIxS" C99 specifies %zu ptrdiff_t %d %"PRIdS" C99 specifies %zd Note that the PRI* macros expand to independent strings which are concatenated by the compiler. Hence if you are using a non-constant format string, you need to insert the value of the macro into the format, rather than the name. It is still possible, as usual, to include length specifiers, etc., after the % when using the PRI* macros. So, e.g. printf("x = %30"PRIuS"\n", x) would expand on 32-bit Linux to printf("x = %30" "u" "\n", x), which the compiler will treat as printf("x = %30u\n", x). Remember that sizeof(void *) != sizeof(int). Use intptr_t if you want a pointer-sized integer. You may need to be careful with structure alignments, particularly for structures being stored on disk. Any class/structure with a int64_t/uint64_t member will by default end up being 8-byte aligned on a 64-bit system. If you have such structures being shared on disk between 32-bit and 64-bit code, you will need to ensure that they are packed the same on both architectures. Most compilers offer a way to alter structure alignment. For gcc, you can use __attribute__((packed)). MSVC offers #pragma pack() and __declspec(align()). Use the LL or ULL suffixes a

5,391

社区成员

发帖
与我相关
我的任务
社区描述
Delphi 开发及应用
社区管理员
  • VCL组件开发及应用社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧