【原创】C语言堆栈入门——堆和栈的区别

ji7421 2012-07-24 05:10:52
在计算机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。但对于很多的初学着来说,堆栈是一个很模糊的概念。堆栈:一种数据结构、一个在程序运行时用于存放的地方,这可能是很多初学者的认识,因为我曾经就是这么想的和汇编语言中的堆栈一词混为一谈。我身边的一些编程的朋友以及在网上看帖遇到的朋友中有好多也说不清堆栈,所以我想有必要给大家分享一下我对堆栈的看法,有说的不对的地方请朋友们不吝赐教,这对于大家学习会有很大帮助。

首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上堆栈是两种数据结构:堆和栈。

堆和栈都是一种数据项按序排列的数据结构。

我们先从大家比较熟悉的栈说起吧,它是一种具有后进先出性质的数据结构,也就是说后存放的先取,先存放的后取。这就如同我们要取出放在箱子里面底下的东西(放入的比较早的物体),我们首先要移开压在它上面的物体(放入的比较晚的物体)。而堆就不同了,堆是一种经过排序的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。由于堆的这个特性,常用来实现优先队列,堆的存取是随意,这就如同我们在图书馆的书架上取书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。

然而我要说的重点并不在这,我要说的堆和栈并不是数据结构的堆和栈,之所以要说数据结构的堆和栈是为了和后面我要说的堆区和栈区区别开来,请大家一定要注意。

下面就说说C语言程序内存分配中的堆和栈,这里有必要把内存分配也提一下,大家不要嫌我啰嗦,一般情况下程序存放在Rom或Flash中,运行时需要拷到内存中执行,内存会分别存储不同的信息,如下图所示:





内存中的栈区处于相对较高的地址以地址的增长方向为上的话,栈地址是向下增长的,栈中分配局部变量空间,堆区是向上增长的用于分配程序员申请的内存空间。另外还有静态区是分配静态变量,全局变量空间的;只读区是分配常量和程序代码空间的;以及其他一些分区。



来看一个网上很流行的经典例子:
main.cpp
  int a = 0; 全局初始化区
  char *p1; 全局未初始化区
  main()
  {
  int b; 栈
  char s[] = "abc"; 栈
  char *p2; 栈
  char *p3 = "123456"; 123456\0在常量区,p3在栈上。
  static int c =0; 全局(静态)初始化区
  p1 = (char *)malloc(10); 堆
  p2 = (char *)malloc(20); 堆
  }
  
不知道你是否有点明白了,堆和栈的第一个区别就是申请方式不同:栈(英文名称是stack)是系统自动分配空间的,例如我们定义一个 char a;系统会自动在栈上为其开辟空间。而堆(英文名称是heap)则是程序员根据需要自己申请的空间,例如malloc(10);开辟十个字节的空间。由于栈上的空间是自动分配自动回收的,所以栈上的数据的生存周期只是在函数的运行过程中,运行后就释放掉,不可以再访问。而堆上的数据只要程序员不释放空间,就一直可以访问到,不过缺点是一旦忘记释放会造成内存泄露。还有其他的一些区别我认为网上的朋友总结的不错这里转述一下:



1.申请后系统的响应
  栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
  堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
也就是说堆会在申请后还要做一些后续的工作这就会引出申请效率的问题



2.申请效率的比较
  栈由系统自动分配,速度较快。但程序员是无法控制的。
  堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.



3.申请大小的限制
  栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
  堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
  
4.堆和栈中的存储内容
  栈: 在函数调用时,第一个进栈的是主函数中函数调用后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
  当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
  堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。



5.存取效率的比较 
  char s1[] = "aaaaaaaaaaaaaaa";
  char *s2 = "bbbbbbbbbbbbbbbbb";
  aaaaaaaaaaa是在运行时刻赋值的;
  而bbbbbbbbbbb是在编译时就确定的;
  但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
  比如:
  #include
  void main()
  {
  char a = 1;
  char c[] = "1234567890";
  char *p ="1234567890";
  a = c[1];
  a = p[1];
  return;
  }
  对应的汇编代码
  10: a = c[1];
  00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
  0040106A 88 4D FC mov byte ptr [ebp-4],cl
  11: a = p[1];
  0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
  00401070 8A 42 01 mov al,byte ptr [edx+1]
  00401073 88 45 FC mov byte ptr [ebp-4],al

堆和栈的区别可以引用一位前辈的比喻来看出:
  
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
  
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。比喻很形象,说的很通俗易懂,不知道你是否有点收获。
请保留出处:本文来自中国电子网www.21ic.com欢迎转载。
...全文
4274 30 打赏 收藏 转发到动态 举报
写回复
用AI写文章
30 条回复
切换为时间正序
请发表友善的回复…
发表回复
ni_mamagea 2014-05-24
  • 打赏
  • 举报
回复
2楼讲的太全面了,没什么好补充了
zhangwuji154 2014-05-24
  • 打赏
  • 举报
回复
堆是堆,栈是栈,堆栈是堆栈,不要把堆当成栈,也不要把栈当成堆,也不要把堆和栈当成堆栈.
FrankHB1989 2014-05-24
  • 打赏
  • 举报
回复
堆就是堆,栈就是栈。所谓堆栈本来就是call stack(调用栈)的脑残翻译。数据结构里根本就没有“堆栈”这个说法。加上M$官方翻译不知轻重助纣为虐,不知道误导多少人了。 所谓“C语言堆栈”也是无的放失。 C语言压根就没要求函数调用的活动记录存储在栈里面。反倒C++稍微有那么点搭边(exception stack unwinding),虽然实际上也不是。即便是用栈实现,也不要求就一定是体系结构直接支持的栈。 当然,考虑到C不要求支持first class continuation这样的基本控制结构,限定用栈作为活动记录来换取性能是主流做法。但麻烦搞清楚:语言跟语言的实现是两回事。
lm_whales 2014-05-24
  • 打赏
  • 举报
回复
面向过程(函数)的高级语言,出现的基础是栈, 有了栈,才能实现函数过程的调用。 此前的高级语言; 采用的是跳转,来实现子程序和子过程的调用的。 虽然C,C++标准,可能没有栈的描述。 但是,离开栈谈论,pascal,C出现以后的高级语言,是不可想象的。
赵4老师 2014-05-23
  • 打赏
  • 举报
回复
VMMap 是进程虚拟和物理内存分析实用工具。http://technet.microsoft.com/zh-cn/sysinternals/dd535533 15楼怎么挖的坟?
lm_whales 2014-05-23
  • 打赏
  • 举报
回复
3)二者的联系 X86 上 编程语言的栈,C ,C++ 语言并没有实现栈数据结构。 他们利用的是,X86的栈,是硬件实现的,后进先出队列。 硬件有Push,Pop指令,以及 SS段寄存器,esp,ebp 栈指针寄存器。支持栈操作。 软件只要设置一下栈存储区就行,即初始化一下SS,即可 。。。这通常不需要程序员做这个工作, 而C,C++语言中,栈初始化操作,是操作系统 和C,C++库,C,C++ 编译器实现的。 具体就是操作系统实现栈初始化, C,C++库,C,C++ 编译器实现的。 可能会对,栈的初始化加以调整。 STL 的栈类型,则是纯粹的,数据结构的软件实现。 并不是C,C++语言的栈本身。
lm_whales 2014-05-23
  • 打赏
  • 举报
回复
2) 堆和栈两种数据结构 这个不用说了,这是两种不同的数据结构。。 是后进先出队列。 堆一般是树。 或者链表之类的。
lm_whales 2014-05-23
  • 打赏
  • 举报
回复
1)汇编和C,C++语言的堆栈以及堆和栈 堆栈 = 栈 堆 = 自由内存 堆栈之所以,会连在一起叫,因为早期的计算机,编程语言中 堆和栈是相邻的两块内存。。。或者说是同一块内存 二者相向生长,二者都是动态生长的。 只是栈区,是自动分配释放的,程序员只要定义变量; 就完成了栈内存的分配,不需要为释放写代码。 这种对象(变量),是有名对象(变量) 堆区需要手动分配内存,手动释放内存。C语言要调用库函数 C++ 除了C的方式,增加了new ,delete ,new[],delete[] 运算符用于分配堆区内存。 堆内存,对于C,C++是无名内存区域; 所以必须通过有名的指针,或者有名的指针相关的其他指针,间接使用。 因为高级编程语言,透过名字来操作内存(数据),而不是直接使用,内存位置(地址)。
li4c 2014-05-22
  • 打赏
  • 举报
回复
主楼为什么要复制别人的博文啊
nadleeh 2014-05-22
  • 打赏
  • 举报
回复
引用 楼主 ji7421 的回复:
在计算机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。但对于很多的初学着来说,堆栈是一个很模糊的概念。堆栈:一种数据结构、一个在程序运行时用于存放的地方,这可能是很多初学者的认识,因为我曾经就是这么想的和汇编语言中的堆栈一词混为一谈。我身边的一些编程的朋友以及在网上看帖遇到的朋友中有好多也说不清堆栈,所以我想有必要给大家分享一下我对堆栈的看法,有说的不对的地方请朋友们不吝赐教,这对于大家学习会有很大帮助。 首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上堆栈是两种数据结构:堆和栈。 堆和栈都是一种数据项按序排列的数据结构。 我们先从大家比较熟悉的栈说起吧,它是一种具有后进先出性质的数据结构,也就是说后存放的先取,先存放的后取。这就如同我们要取出放在箱子里面底下的东西(放入的比较早的物体),我们首先要移开压在它上面的物体(放入的比较晚的物体)。而堆就不同了,堆是一种经过排序的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。由于堆的这个特性,常用来实现优先队列,堆的存取是随意,这就如同我们在图书馆的书架上取书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。 然而我要说的重点并不在这,我要说的堆和栈并不是数据结构的堆和栈,之所以要说数据结构的堆和栈是为了和后面我要说的堆区和栈区区别开来,请大家一定要注意。 下面就说说C语言程序内存分配中的堆和栈,这里有必要把内存分配也提一下,大家不要嫌我啰嗦,一般情况下程序存放在Rom或Flash中,运行时需要拷到内存中执行,内存会分别存储不同的信息,如下图所示: 内存中的栈区处于相对较高的地址以地址的增长方向为上的话,栈地址是向下增长的,栈中分配局部变量空间,堆区是向上增长的用于分配程序员申请的内存空间。另外还有静态区是分配静态变量,全局变量空间的;只读区是分配常量和程序代码空间的;以及其他一些分区。 来看一个网上很流行的经典例子: main.cpp   int a = 0; 全局初始化区   char *p1; 全局未初始化区   main()   {   int b; 栈   char s[] = "abc"; 栈   char *p2; 栈   char *p3 = "123456"; 123456\0在常量区,p3在栈上。   static int c =0; 全局(静态)初始化区   p1 = (char *)malloc(10); 堆   p2 = (char *)malloc(20); 堆   }    不知道你是否有点明白了,堆和栈的第一个区别就是申请方式不同:栈(英文名称是stack)是系统自动分配空间的,例如我们定义一个 char a;系统会自动在栈上为其开辟空间。而堆(英文名称是heap)则是程序员根据需要自己申请的空间,例如malloc(10);开辟十个字节的空间。由于栈上的空间是自动分配自动回收的,所以栈上的数据的生存周期只是在函数的运行过程中,运行后就释放掉,不可以再访问。而堆上的数据只要程序员不释放空间,就一直可以访问到,不过缺点是一旦忘记释放会造成内存泄露。还有其他的一些区别我认为网上的朋友总结的不错这里转述一下: 1.申请后系统的响应   栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。   堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 也就是说堆会在申请后还要做一些后续的工作这就会引出申请效率的问题 2.申请效率的比较   栈由系统自动分配,速度较快。但程序员是无法控制的。   堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便. 3.申请大小的限制   栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。   堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。    4.堆和栈中的存储内容   栈: 在函数调用时,第一个进栈的是主函数中函数调用后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。   当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。   堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。 5.存取效率的比较    char s1[] = "aaaaaaaaaaaaaaa";   char *s2 = "bbbbbbbbbbbbbbbbb";   aaaaaaaaaaa是在运行时刻赋值的;   而bbbbbbbbbbb是在编译时就确定的;   但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。   比如:   #include   void main()   {   char a = 1;   char c[] = "1234567890";   char *p ="1234567890";   a = c[1];   a = p[1];   return;   }   对应的汇编代码   10: a = c[1];   00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]   0040106A 88 4D FC mov byte ptr [ebp-4],cl   11: a = p[1];   0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]   00401070 8A 42 01 mov al,byte ptr [edx+1]   00401073 88 45 FC mov byte ptr [ebp-4],al 堆和栈的区别可以引用一位前辈的比喻来看出:    使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。    使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。比喻很形象,说的很通俗易懂,不知道你是否有点收获。 请保留出处:本文来自中国电子网www.21ic.com欢迎转载。
要想理解堆和栈,用我的话说,栈靠汇编,堆靠linux内存管理
denghuihua 2014-05-20
  • 打赏
  • 举报
回复
很好
知行力 2014-03-28
  • 打赏
  • 举报
回复
嗯 说的不错 学习了
水平不流 2014-03-26
  • 打赏
  • 举报
回复
讲得不错哦~,因为是很多教材都堆栈堆栈地叫,误导了很多人。
iamkconghua 2014-03-26
  • 打赏
  • 举报
回复
专门讲内存分区的视频: 2.21.C语言_内存分区_栈区 http://www.tudou.com/listplay/z5u9lwXuPKU/xduZ8JPrbl8.html 2.22.C语言_内存分区_堆区 http://www.tudou.com/listplay/z5u9lwXuPKU/ArQuU8Alh5s.html 2.23.C语言_内存分区_全局静态区 http://www.tudou.com/listplay/z5u9lwXuPKU/5xrTN2m4yqc.html 2.24.C语言_内存分区_文字常量区_代码区 http://www.tudou.com/listplay/z5u9lwXuPKU/etv4mUFAzns.html
derekrose 2014-03-25
  • 打赏
  • 举报
回复
到底是原创还是转载 转载的话请3天内修改标题
ies_sweet 2012-07-25
  • 打赏
  • 举报
回复
看了,楼主还是挺喜欢钻研细节的嘛

支持下!
ies_sweet 2012-07-25
  • 打赏
  • 举报
回复
看了,楼主还是挺喜欢研究细节的嘛

支持一下
skillart 2012-07-25
  • 打赏
  • 举报
回复
mark 有空研究下
SKATE11 2012-07-24
  • 打赏
  • 举报
回复
“内存中的栈区处于相对较高的地址以地址的增长方向为上的话,栈地址是向下增长的”弱弱的问下楼主这句话是什么意思啊?是栈地址分配从高到低吗?
majia2011 2012-07-24
  • 打赏
  • 举报
回复
写的很好,lz,最好说明下,是以nt为基础进行讲解的,呵呵呵
加载更多回复(7)
目录 第1章 嵌入式系统基础知识 .1 1.1 嵌入式系统概述 1 1.1.1 嵌入式系统的发展史 2 1.1.2 嵌入式系统的定义与特点 3 1.1.3 嵌入式系统的特点 4 1.2 嵌入式系统的组成 5 1.2.1 嵌入式系统的硬件架构 6 1.2.2 嵌入式操作系统 9 1.2.3 嵌入式应用软件 11 1.3 arm处理器平台介绍 12 1.3.1 arm处理器简介 12 1.3.2 arm处理器系列 13 1.3.3 arm体系结构简介 17 1.3.4 s3c2410处理器简介 18 1.4 嵌入式系统硬件平台选型 22 1.4.1 硬件平台的选择 22 1.4.2 arm处理器选型 23 1.5 嵌入式系统开发概述 25 1.5.1 嵌入式系统开发流程 25 1.5.2 嵌入式软件开发流程 26 .本章小结 31 动手练练 31 第2章 嵌入式linux c语言开发工具 32 2.1 嵌入式linux下c语言概述 32 2.1.1 c语言简史 33 2.1.2 c语言特点 33 2.1.3 嵌入式linux c语言编程环境 34 2.2 嵌入式linux编辑器vi的使用 35 2.2.1 vi的基本模式 35 2.2.2 vi的基本操作 36 2.2.3 vi的使用实例分析 40 2.3 嵌入式linux编译器gcc的使用 41 2.3.1 gcc概述 41 2.3.2 gcc编译流程分析 42 2.3.3 gcc警告提示 45 2.3.4 gcc使用库函数 47 2.3.5 gcc代码优化 49 2.4 嵌入式linux调试器gdb的使用 49 2.4.1 gdb使用实例 50 2.4.2 设置/删除断点 53 2.4.3 数据相关命令 54 2.4.4 调试运行环境相关命令 55 2.4.5 相关命令 55 2.5 make工程管理器 55 2.5.1 makefile基本结构 56 2.5.2 makefile变量 58 2.5.3 makefile规则 61 2.5.4 make使用 62 2.6 emacs综合编辑器 63 2.6.1 emacs的启动与退出 63 2.6.2 emacs的基本编辑 64 2.6.3 emacs的c模式 66 2.6.4 emacs的shell模式 69 本章小结 70 动手练练 70 第3章 构建嵌入式linux系统 71 3.1 嵌入式系统开发环境的构建 71 3.1.1 嵌入式交叉编译环境搭建 71 3.1.2 minicom和超级终端配置及使用 76 3.1.3 宿主机服务配置 83 3.2 bootloader 87 3.2.1 bootloader的概念 88 3.2.2 bootloader启动流程分析 89 3.2.3 u-boot概述 89 3.2.4 u-boot源码导读 90 3.3 编译嵌入式linux内核 91 3.4 linux内核目录结构 95 3.5 制作文件系统 95 本章小结 97 动手练练 97 第4章 嵌入式linux c语言基础——数据、表达式 98 4.1 嵌入式linux c语言概述 98 4.2 基本数据类型 100 4.2.1 整型家族 100 4.2.2 实型家族 102 4.2.3 字符型家族 103 4.2.4 枚举家族 104 4.2.5 指针家族 105 4.3 变量与常量 107 4.3.1 变量的定义 107 4.3.2 typedef 113 4.3.3 常量定义 114 4.3.4 arm-linux基本数据类型综合应用实例 115 4.4 运算符与表达式 118 4.4.1 算术运算符和表达式 119 4.4.2 赋值运算符和表达式 121 4.4.3 逗号运算符和表达式 123 4.4.4 位运算符和表达式 124 4.4.5 关系运算符和表达式 126 4.4.6 逻辑运算符和表达式 127 4.4.7 sizeof操作符 129 4.4.8 条件(?)运算符 130 4.4.9 运算符优先级总结 131 4.4.10 arm-linux运算符 综合实例 133 本章小结 137 动手练练 137 第5章 嵌入式linux c语言基础——控制语句及函数 138 5.1 嵌入式linux c语言程序结构概述 138 5.1.1 嵌入式linux c语言3种程序结构 138 5.1.2 嵌入式linux c语言基本语句 139 5.2 选择语句 142 5.2.1 if语句 142 5.2.2 switch语句 145 5.2.3 arm-linux选择语句应用实例 147 5.3 循环语句 148 5.3.1 while和do-while语句 148 5.3.2 for循环语句 149 5.3.3 break和continue语句 151 5.3.4 arm-linux循环语句应用实例 152 5.4 goto语句 154 5.4.1 goto语句语法 154 5.4.2 arm-linux中goto语句应用实例 154 5.5 函数的定义与声明 155 5.5.1 c语言函数概述 155 5.5.2 函数定义 157 5.5.3 函数声明 157 5.5.4 arm-linux函数定义与声明实例 158 5.6 函数的参数、值和基本调用 160 5.6.1 函数的参数 160 5.6.2 函数的值 161 5.6.3 函数的基本调用 161 5.7 函数的嵌套、递归调用 162 5.7.1 函数的嵌套调用 162 5.7.2 函数的递归调用 162 5.7.3 arm-linux函数调用应用实例 165 本章小结 167 动手练练 ..167 第6章 嵌入式linux c语言基础——数组、指针与结构 168 6.1 数组 169 6.1.1 一维数组 169 6.1.2 字符串 172 6.1.3 二维数组 174 6.2 指针 175 6.2.1 指针的概念 175 6.2.2 指针变量的操作 177 6.2.3 指针和数组 184 6.2.4 指针高级议题 191 6.3 结构体与联合 196 6.3.1 结构体 196 6.3.2 联合 200 6.3.3 arm-linux指针、结构体使用实例 201 本章小结 203 动手练练 203 第7章 嵌入式linux c语言基础——高级议题 204 7.1 预处理 204 7.1.1 预处理的概念 204 7.1.2 预定义 205 7.1.3 文件包含 211 7.1.4 条件编译 212 7.2 c语言中的内存分配 214 7.2.1 c语言程序所占内存分类 214 7.2.2 区别 215 7.3 嵌入式linux可移植性考虑 216 7.3.1 字长和数据类型 216 7.3.2 数据对齐 218 7.3.3 字节顺序 218 7.4 c和汇编的接口 219 7.4.1 内嵌汇编的语法 219 7.4.2 编译器优化介绍 221 7.4.3 c语言关键字volatile 222 7.4.4 memory描述符 222 7.4.5 gcc对内嵌汇编语言的处理方式 223 本章小结 224 动手练练 224 第8章 嵌入式linux c语言基础——arm linux内核常见数据结构 225 8.1 链表 226 8.1.1 链表概述 226 8.1.2 单向链表 226 8.1.3 双向链表 233 8.1.4 循环链表 234 8.1.5 arm linux中链表使用实例 235 8.2 树、二叉树、平衡树 237 8.2.1 树 237 8.2.2 二叉树 238 8.2.3 平衡树 245 8.2.4 arm linux中红黑树使用实例 247 8.3 哈希表 249 8.3.1 哈希表的概念及作用 249 8.3.2 哈希表的构造方法 250 8.3.3 哈希表的处理冲突方法 252 8.3.4 arm linux中哈希表使用实例 253 本章小结 255 动手练练 255 第9章 文件i/o相关实例 256 9.1 linux系统调用及用户编程接口(api) 257 9.1.1 系统调用 257 9.1.2 用户编程接口(api) 257 9.1.3 系统命令 258 9.2 arm linux文件i/o系统概述 258 9.2.1 虚拟文件系统(vfs) 258 9.2.2 通用文件模型 259 9.2.3 arm linux的设备文件 264 9.3 文件i/o操作 265 9.3.1 不带缓存的文件i/o操作 265 9.3.2 标准i/o开发 276 9.4 嵌入式linux串口应用开发 279 9.4.1 串口概述 279 9.4.2 串口设置详解 280 9.4.3 串口使用详解 284 本章小结 287 动手练练 287 第10章 arm linux进程线程开发实例 288 10.1 arm linux进程线程管理 289 10.1.1 进程描述符及任务结构 289 10.1.2 进程的调度 291 10.1.3 linux中的线程 293 10.1.4 linux中进程间通信 293 10.2 arm linux进程控制相关api 294 10.3 arm linux进程间通信api 301 10.3.1 管道通信 301 10.3.2 信号通信 303 10.3.3 共享内存 308 10.3.4 消息队列 309 10.4 arm linux线程相关api 312 10.5 linux守护进程 317 10.5.1 守护进程概述 317 10.5.2 编写规则 318 10.5.3 守护进程实例 319 本章小结 321 动手练练 321 第11章 arm linux网络开发实例 322 11.1 tcp/ip协议简介 322 11.1.1 tcp/ip的分层模型 322 11.1.2 tcp/ip分层模型特点 324 11.1.3 tcp/ip核心协议 325 11.2 网络基础编程 328 11.2.1 socket概述 328 11.2.2 地址及顺序处理 328 11.2.3 socket基础编程 333 11.3 web服务器 339 11.3.1 web服务器功能 339 11.3.2 web服务器协议 341 11.3.3 web服务器协议 342 11.3.4 运行web服务器 347 11.4 traceroute程序实例 347 11.4.1 traceroute原理简介 347 11.4.2 traceroute实例与分析 348 11.4.3 traceroute实例运行结果 354 本章小结 354 动手练练 354 第12章 嵌入式linux设备驱动开发 355 12.1 设备驱动概述 355 12.1.1 设备驱动简介 355 12.1.2 设备驱动程序的特点 356 12.2 模块编程 357 12.2.1 模块编程简介 357 12.2.2 模块相关命令 357 12.2.3 模块编程流程 358 12.3 字符设备驱动编写 360 12.4 块设备驱动编写 369 12.4.1 块设备驱动程序描述符 369 12.4.2 块设备驱动编写流程 369 12.5 简单的skull驱动实例 375 12.5.1 驱动简介 375 12.5.2 驱动编写流程 376 12.5.3 结果分析 379 12.6 lcd驱动编写实例 379 12.6.1 lcd工作原理 379 12.6.2 lcd驱动实例 382 本章小结 389 动手练练 389 第13章 视频监控系统  390 13.1 视频监控系统概述 390 13.1.1 系统组成 390 13.1.2 音视频服务器 391 13.1.3 音视频客户端 392 13.1.4 通信传输控制协议 393 13.2 基本数据结构 395 13.3 功能实现 398 13.3.1 传输控制 398 13.3.2 用户检验 401 13.3.3 控制命令处理 403 13.3.4 云台转动控制 404 13.3.5 线程相关 407 本章小结 408 动手练练 ...408

69,382

社区成员

发帖
与我相关
我的任务
社区描述
C语言相关问题讨论
社区管理员
  • C语言
  • 花神庙码农
  • 架构师李肯
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧