c++批判哪里有得下载??

C/C++ > C语言 [问题点数:0分]
等级
本版专家分:521
结帖率 100%
hucong

等级:

C++批判

C++批判...

C++批判(1)

C++?? A Critique of C++ and Programming and Language Trends of the 1990s》 3/E【Ian Joyner 1996】 该篇文章已经包含在Ian Joyner所写的《Objects Unencapsulated ...

C++批判(4)

C++允许在参数类型不同的前提下重载函数。重载的函数与具有多态性的函数(即虚函数)不同处在于:调用正确的被重载函数实体是在编译期间就被决定了的;而对于具有多态性的函数来说,是通过运行期间的动态绑定来调用...

C++中cout的含义????

由于以前学过C,所以这段代码的其它部分在我看来都还算“正常”,然而cout却很独特:既不是函数,似乎也不是C++非凡规定出来的像if,for一类非凡语法的“语句”。由于只是初步介绍,所以那本书只是简单的说cout是...

C++的坑真的多吗?

C++的坑多少? C++的初衷 我对C++的感情 C++的未来 总结 事由 周五的时候,我在我的微博上发了一个贴说了一下一个网友给我发来的C++程序的规范和内存管理写的不是很好(后来我删除了,因为当事人要求

C++】如何阅读别人的代码?如何阅读别人的C++代码?如何高效学习他人代码

[ C/C++ ] 程序学习--如何阅读别人的代码 ++++++++++++ 第一章: 导论 ++++++++++++ 1.要养成一个习惯, 经常花时间阅读别人编写的高品质代码. 2.要选择地阅读代码, 同时, 还要自己的目标. 您是想...

Linux 之父对 C++ 进行了炮轰,C++不值得推荐?

C++ 是由 Bjarne Stroustrup 于 1979 年在贝尔实验室开始设计开发的。C++ 进一步扩充和完善了 C 语言,是一种面向对象的程序设计语言。C++ 可运行于多种平台上,如 Windows、MAC 操作系统以及 UNIX 的各种版本。但是...

C++批判(第三版).7z

C++批判(第三版).7z C++批判(第三版).7z

现在市场上,C++ 主要用来做什么?

我读研期间学的 Windows C++ 开发,毕业第一份工作很挑,非 Windows C/C++ 不做,后来做了几年 Windows C++ 技术负责人,再后来又转行做 Linux C++,又做了几年 Linux C++ 主程,再后来做了 Java 开发,如今作为负责...

C++批判(5)

继承的本质 继承关系是一种耦合度很高的关系,它与组合及一般化(genericity)一样,提供了OO中的一种基本方法,用以将不同的软件组件组合起来。一个类的实例同时也是那个类的所有的祖先的实例。...

C++批判 C++ Critique

C++批判 C++ Critique

C++批判

C++批判的批判 1,typedef不必要?a,typedef提供了一层间接,面向对象语言中,接口掩盖了运行时不同具体类型间的差别,而typedef掩盖了编译时不同类型间的差别,却又不丧失类型安全性b,一般语言只能返回“值”,而...

如何成为一名合格的 C/C++ 开发者?

笔者从学生时代开始接触 C/C++,工作以后先后担任过 C++ 客户端和服务器的开发经理并带队开发,至今已经十多年了。虽然时至今日哪种编程语言对我来说已经不再重要(我目前主要从事 Java 开发),但 C/C++ 仍然是...

C++批判(3)

C++ARM中解释说type-safe linkage并不能100%的保证类型安全。既然它不那100%的保证类型安全,那么它就肯定是不安全的。统计分析显示:即便在很苛刻的情况下,C++ 出现单独的O-ring错误的可能性也...

C++批判的批判

1,typedef不必要? a,typedef提供了一层间接,面向对象语言中,接口掩盖了运行时不同具体类型间的差别,而typedef掩盖了编译时不同类型间的差别,却又不丧失类型安全性b,一般语言只能返回“值”,而typedef...

C++批判(2)

S 94】中提到对于类型安全的检测来说两种假设。一种是封闭式环境下的假设,此时程序中的各个部分在编译期间就能被确定,然后我们可以对于整个程序来进行类型检测。另一种是开放式环境下的假设,此时对于类型的检测...

垃圾分类数据集及代码

资源说明: 数据集主要包括6类图片:硬纸板、纸、塑料瓶、玻璃瓶、铜制品、不可回收垃圾 代码运行说明: 1、 安装运行项目所需的python模块,包括tensorflow | numpy | keras | cv2 2、 train.py用于训练垃圾分类模型,由于训练的数据量过于庞大,因此不一并上传 3、 predict.py用于预测垃圾的类别,首先运行predict.py,然后输入需要预测的文件路径,即可得到结果。

大唐杯资料+题库(移动通信)

大唐杯资料+题库(移动通信)

计算机设计大赛作品开发文档.docx

参加的是2020年的计算机设计大赛,软件应用与开发赛道。我们的开发文档仅供参考。(20页)

哈工大形式语言与自动机历年试题

哈工大形式语言与自动机历年试题,含答案的哦,仅供参考

“互联网+”大学生创新创业大赛项目计划书

填 写 说 明 1.封面上“项目编号”一栏由秘书组编写; 2.项目名称力求简洁、明确,每个项目限报一名负责人; 3.请逐项认真填写; 4.本次大赛必须以团队形式报名参赛,每个团队成员不能少于 3人(包括项目负责人在内); 5.请将撰写完成后的项目计划书按规定时间提交。

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

Java基础核心技术:多线程(day16-day17)

本套Java视频完全针对初级学员,课堂实录,自发布以来,好评如潮!Java视频中注重与学生互动,讲授幽默诙谐、细致入微,覆盖Java基础所有核心知识点,同类Java视频中也是代码量大、案例多、实战性强的。同时,本Java视频教程注重技术原理剖析,深入JDK源码,辅以代码实战贯穿始终,用实践驱动理论,并辅以必要的代码练习。 通过20的课程学习,使学员掌握java核心语法、面向对象思想编程、异常处理、IO流、集合类、多线程、网络编程等。

华中科技大学educoder存储系统设计全部通关

华中科技大学educoder存储系统设计全部通关包含四路组和二路组,用了四天做的,查看电路把txt内容复制到circ文件中用logisim打开即可

R语言绘图基础

介绍R语言的绘图基础,如固有颜色、RGB取色、主题调色板介绍,文字字体、颜色、大小等参数详解,点样式、颜色、大小等参数详解,线条样式、颜色、粗细等参数详解;详细介绍R低级绘图函数:标题、图例、坐标轴、网格线、点、线等;后介绍了R绘图函数:散点图、线图、箱线图、散点图矩阵、气泡图等。 通过此课程,了解R语言的绘图基础,熟练运用R低级绘图函数,熟练运用R高级绘图函数绘制图形

Microsoft Visual C++ 2015-2019 运行库合集,包含32位64位

Microsoft Visual C++ 2015-2019 运行库合集,32位64位都有,解决缺失dll包问题。

SpringCloud微架构

SpringCloud是现在热门的RPC开发框架,也是以后的RPC开发趋势。在本套课程之中将为读者详细的讲解分布式技术的发展历史、以及各种分布式开发优缺点,同时详细的分析了整个SpringCloud中所涉及到的技术点以及相关作用。 本课程将基于Rest服务、SpringSecurity访问进行讲解,详细的讲解了Eureka注册发现服务、Eureka-HA机制、服务部署处理、Ribbon负载均衡、Feign接口映射、Hystrix熔断处理、Zuul代理访问等SpringCloud核心内容。随后在基础内容的讲解基础上又为读者讲解了SpringCloudConfig、GITHUB服务配置、消息服务、服务监控等辅助内容。

STM32F103C8T6最小系统原理图

STM32F103C8T6最小系统原理图文件,包括电源电路、单片机等 11111111111111111111

从零基础开始用Python处理Excel数据.pdf

首先学习Python的基础知识,然后使用Python来控制Excel,做数据处理。 Excel使用者、Python爱好者、数据处理人员、办公人员等 第1章 python基础 1.1 什么是python? 1.2 为什么要学习用Python处理Excel表格? 1.3 手把手教你安装python程序 1.3.1 下载python 1.3.2 安装python 1.3.3 验证是否安装成功 1.4 安装Python集成开发工具PyCharm 1.4.1 下载 1.4.2 安装 1.5 Python的输入与输出

互联网+大赛商业计划书案例(慧淬 国赛金奖).pdf

互联网+创新创业大赛国赛金奖——“慧淬”,商业计划书 互联网+创新创业大赛国赛金奖——“慧淬”,商业计划书

相关热词 c# 自行处理dpi 运行c#上的.exe文件 c#控制间隔时间 c#局部透明 c#手机图片左右滑动特效 c# 组合类表框 c# 数组过滤 c# 重载和重写实例 c#.net制作窗口 c# 括号内 正则表达式