有谁知道malloc和free的实现机制,有源代码吗?

superspring 2009-07-14 07:28:08
谢谢
...全文
1007 21 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
21 条回复
切换为时间正序
请发表友善的回复…
发表回复
kangnixi 2010-02-17
  • 打赏
  • 举报
回复
mark一下,以备后用
suchx 2009-07-16
  • 打赏
  • 举报
回复
CSAPP P627介绍动态存储器分配的那一部分有很详细的介绍,希望楼主认真看
易之阴阳 2009-07-15
  • 打赏
  • 举报
回复

头文件mm.h
#ifndef _MM_H
#define _MM_H

#define PAGE_SIZE 4096

extern unsigned long get_free_page(void);
extern unsigned long put_page(unsigned long page,unsigned long address);
extern void free_page(unsigned long addr);

#endif

头文件system.h
#define move_to_user_mode() \
__asm__ ("movl %%esp,%%eax\n\t" \
"pushl $0x17\n\t" \
"pushl %%eax\n\t" \
"pushfl\n\t" \
"pushl $0x0f\n\t" \
"pushl $1f\n\t" \
"iret\n" \
"1:\tmovl $0x17,%%eax\n\t" \
"movw %%ax,%%ds\n\t" \
"movw %%ax,%%es\n\t" \
"movw %%ax,%%fs\n\t" \
"movw %%ax,%%gs" \
:::"ax")

#define sti() __asm__ ("sti"::)
#define cli() __asm__ ("cli"::)
#define nop() __asm__ ("nop"::)

#define iret() __asm__ ("iret"::)

#define _set_gate(gate_addr,type,dpl,addr) \
__asm__ ("movw %%dx,%%ax\n\t" \
"movw %0,%%dx\n\t" \
"movl %%eax,%1\n\t" \
"movl %%edx,%2" \
: \
: "i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
"o" (*((char *) (gate_addr))), \
"o" (*(4+(char *) (gate_addr))), \
"d" ((char *) (addr)),"a" (0x00080000))

#define set_intr_gate(n,addr) \
_set_gate(&idt[n],14,0,addr)

#define set_trap_gate(n,addr) \
_set_gate(&idt[n],15,0,addr)

#define set_system_gate(n,addr) \
_set_gate(&idt[n],15,3,addr)

#define _set_seg_desc(gate_addr,type,dpl,base,limit) {\
*(gate_addr) = ((base) & 0xff000000) | \
(((base) & 0x00ff0000)>>16) | \
((limit) & 0xf0000) | \
((dpl)<<13) | \
(0x00408000) | \
((type)<<8); \
*((gate_addr)+1) = (((base) & 0x0000ffff)<<16) | \
((limit) & 0x0ffff); }

#define _set_tssldt_desc(n,addr,type) \
__asm__ ("movw $104,%1\n\t" \
"movw %%ax,%2\n\t" \
"rorl $16,%%eax\n\t" \
"movb %%al,%3\n\t" \
"movb $" type ",%4\n\t" \
"movb $0x00,%5\n\t" \
"movb %%ah,%6\n\t" \
"rorl $16,%%eax" \
::"a" (addr), "m" (*(n)), "m" (*(n+2)), "m" (*(n+4)), \
"m" (*(n+5)), "m" (*(n+6)), "m" (*(n+7)) \
)

#define set_tss_desc(n,addr) _set_tssldt_desc(((char *) (n)),addr,"0x89")
#define set_ldt_desc(n,addr) _set_tssldt_desc(((char *) (n)),addr,"0x82")
易之阴阳 2009-07-15
  • 打赏
  • 举报
回复
最近在研究LINUX 0.11
供你参考
/*
* malloc.c --- a general purpose kernel memory allocator for Linux.
*
* Written by Theodore Ts'o (tytso@mit.edu), 11/29/91
*
* This routine is written to be as fast as possible, so that it
* can be called from the interrupt level.
*
* Limitations: maximum size of memory we can allocate using this routine
* is 4k, the size of a page in Linux.
*
* The general game plan is that each page (called a bucket) will only hold
* objects of a given size. When all of the object on a page are released,
* the page can be returned to the general free pool. When malloc() is
* called, it looks for the smallest bucket size which will fulfill its
* request, and allocate a piece of memory from that bucket pool.
*
* Each bucket has as its control block a bucket descriptor which keeps
* track of how many objects are in use on that page, and the free list
* for that page. Like the buckets themselves, bucket descriptors are
* stored on pages requested from get_free_page(). However, unlike buckets,
* pages devoted to bucket descriptor pages are never released back to the
* system. Fortunately, a system should probably only need 1 or 2 bucket
* descriptor pages, since a page can hold 256 bucket descriptors (which
* corresponds to 1 megabyte worth of bucket pages.) If the kernel is using
* that much allocated memory, it's probably doing something wrong. :-)
*
* Note: malloc() and free() both call get_free_page() and free_page()
* in sections of code where interrupts are turned off, to allow
* malloc() and free() to be safely called from an interrupt routine.
* (We will probably need this functionality when networking code,
* particularily things like NFS, is added to Linux.) However, this
* presumes that get_free_page() and free_page() are interrupt-level
* safe, which they may not be once paging is added. If this is the
* case, we will need to modify malloc() to keep a few unused pages
* "pre-allocated" so that it can safely draw upon those pages if
* it is called from an interrupt routine.
*
* Another concern is that get_free_page() should not sleep; if it
* does, the code is carefully ordered so as to avoid any race
* conditions. The catch is that if malloc() is called re-entrantly,
* there is a chance that unecessary pages will be grabbed from the
* system. Except for the pages for the bucket descriptor page, the
* extra pages will eventually get released back to the system, though,
* so it isn't all that bad.
*/

#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/system.h>

struct bucket_desc { /* 16 bytes */
void *page;
struct bucket_desc *next;
void *freeptr;
unsigned short refcnt;
unsigned short bucket_size;
};

struct _bucket_dir { /* 8 bytes */
int size;
struct bucket_desc *chain;
};

/*
* The following is the where we store a pointer to the first bucket
* descriptor for a given size.
*
* If it turns out that the Linux kernel allocates a lot of objects of a
* specific size, then we may want to add that specific size to this list,
* since that will allow the memory to be allocated more efficiently.
* However, since an entire page must be dedicated to each specific size
* on this list, some amount of temperance must be exercised here.
*
* Note that this list *must* be kept in order.
*/
struct _bucket_dir bucket_dir[] = {
{ 16, (struct bucket_desc *) 0},
{ 32, (struct bucket_desc *) 0},
{ 64, (struct bucket_desc *) 0},
{ 128, (struct bucket_desc *) 0},
{ 256, (struct bucket_desc *) 0},
{ 512, (struct bucket_desc *) 0},
{ 1024, (struct bucket_desc *) 0},
{ 2048, (struct bucket_desc *) 0},
{ 4096, (struct bucket_desc *) 0},
{ 0, (struct bucket_desc *) 0}}; /* End of list marker */

/*
* This contains a linked list of free bucket descriptor blocks
*/
struct bucket_desc *free_bucket_desc = (struct bucket_desc *) 0;

/*
* This routine initializes a bucket description page.
*/
static inline void init_bucket_desc()
{
struct bucket_desc *bdesc, *first;
int i;

first = bdesc = (struct bucket_desc *) get_free_page();
if (!bdesc)
panic("Out of memory in init_bucket_desc()");
for (i = PAGE_SIZE/sizeof(struct bucket_desc); i > 1; i--) {
bdesc->next = bdesc+1;
bdesc++;
}
/*
* This is done last, to avoid race conditions in case
* get_free_page() sleeps and this routine gets called again....
*/
bdesc->next = free_bucket_desc;
free_bucket_desc = first;
}

void *malloc(unsigned int len)
{
struct _bucket_dir *bdir;
struct bucket_desc *bdesc;
void *retval;

/*
* First we search the bucket_dir to find the right bucket change
* for this request.
*/
for (bdir = bucket_dir; bdir->size; bdir++)
if (bdir->size >= len)
break;
if (!bdir->size) {
printk("malloc called with impossibly large argument (%d)\n",
len);
panic("malloc: bad arg");
}
/*
* Now we search for a bucket descriptor which has free space
*/
cli(); /* Avoid race conditions */
for (bdesc = bdir->chain; bdesc; bdesc = bdesc->next)
if (bdesc->freeptr)
break;
/*
* If we didn't find a bucket with free space, then we'll
* allocate a new one.
*/
if (!bdesc) {
char *cp;
int i;

if (!free_bucket_desc)
init_bucket_desc();
bdesc = free_bucket_desc;
free_bucket_desc = bdesc->next;
bdesc->refcnt = 0;
bdesc->bucket_size = bdir->size;
bdesc->page = bdesc->freeptr = (void *) cp = get_free_page();
if (!cp)
panic("Out of memory in kernel malloc()");
/* Set up the chain of free objects */
for (i=PAGE_SIZE/bdir->size; i > 1; i--) {
*((char **) cp) = cp + bdir->size;
cp += bdir->size;
}
*((char **) cp) = 0;
bdesc->next = bdir->chain; /* OK, link it in! */
bdir->chain = bdesc;
}
retval = (void *) bdesc->freeptr;
bdesc->freeptr = *((void **) retval);
bdesc->refcnt++;
sti(); /* OK, we're safe again */
return(retval);
}

/*
* Here is the free routine. If you know the size of the object that you
* are freeing, then free_s() will use that information to speed up the
* search for the bucket descriptor.
*
* We will #define a macro so that "free(x)" is becomes "free_s(x, 0)"
*/
void free_s(void *obj, int size)
{
void *page;
struct _bucket_dir *bdir;
struct bucket_desc *bdesc, *prev;

/* Calculate what page this object lives in */
page = (void *) ((unsigned long) obj & 0xfffff000);
/* Now search the buckets looking for that page */
for (bdir = bucket_dir; bdir->size; bdir++) {
prev = 0;
/* If size is zero then this conditional is always false */
if (bdir->size < size)
continue;
for (bdesc = bdir->chain; bdesc; bdesc = bdesc->next) {
if (bdesc->page == page)
goto found;
prev = bdesc;
}
}
panic("Bad address passed to kernel free_s()");
found:
cli(); /* To avoid race conditions */
*((void **)obj) = bdesc->freeptr;
bdesc->freeptr = obj;
bdesc->refcnt--;
if (bdesc->refcnt == 0) {
/*
* We need to make sure that prev is still accurate. It
* may not be, if someone rudely interrupted us....
*/
if ((prev && (prev->next != bdesc)) ||
(!prev && (bdir->chain != bdesc)))
for (prev = bdir->chain; prev; prev = prev->next)
if (prev->next == bdesc)
break;
if (prev)
prev->next = bdesc->next;
else {
if (bdir->chain != bdesc)
panic("malloc bucket chains corrupted");
bdir->chain = bdesc->next;
}
free_page((unsigned long) bdesc->page);
bdesc->next = free_bucket_desc;
free_bucket_desc = bdesc;
}
sti();
return;
}
下面是头文件
/*
* 'kernel.h' contains some often-used function prototypes etc
*/
void verify_area(void * addr,int count);
volatile void panic(const char * str);
int printf(const char * fmt, ...);
int printk(const char * fmt, ...);
int tty_write(unsigned ch,char * buf,int count);
void * malloc(unsigned int size);
void free_s(void * obj, int size);

#define free(x) free_s((x), 0)

/*
* This is defined as a macro, but at some point this might become a
* real subroutine that sets a flag if it returns true (to do
* BSD-style accounting where the process is flagged if it uses root
* privs). The implication of this is that you should do normal
* permissions checks first, and check suser() last.
*/
#define suser() (current->euid == 0)



cheng_fengming 2009-07-15
  • 打赏
  • 举报
回复
有这么麻烦吗?就是把malloc()和free()函数的原型写出来就可以了吧?

#define NULL 0
#define ALLOCSIZE 1000
char allocbuf[ALLOCSIZE];
char *allocp = allocbuf;

char *alloc(int n)
{
if (allocp+n <= allocbuf + ALLOCSIZE)
{
allocp += n;
return(allocp - n); //返回一个指针,它指向存区的开始位置
}
else
{
return (NULL); //当存区不够分配时,返回一个空指针
}
}

free(char *p)
{
if (p >=allocbuf && p < allocbuf + ALLOCSIZE)
{
allocp = p;
}
}
lbh2001 2009-07-15
  • 打赏
  • 举报
回复
/***
*malloc.c - Get a block of memory from the heap
*
* Copyright (c) 1989-1997, Microsoft Corporation. All rights reserved.
*
*Purpose:
* Defines the malloc() function.
*
*******************************************************************************/

#include <cruntime.h>
#include <malloc.h>
#include <internal.h>
#include <mtdll.h>
#include <dbgint.h>

#ifdef WINHEAP
#include <windows.h>
#include <winheap.h>
#else /* WINHEAP */
#include <heap.h>
#endif /* WINHEAP */


extern int _newmode; /* malloc new() handler mode */


/***
*void *malloc(size_t size) - Get a block of memory from the heap
*
*Purpose:
* Allocate of block of memory of at least size bytes from the heap and
* return a pointer to it.
*
* Calls the new appropriate new handler (if installed).
*
*Entry:
* size_t size - size of block requested
*
*Exit:
* Success: Pointer to memory block
* Failure: NULL (or some error value)
*
*Uses:
*
*Exceptions:
*
*******************************************************************************/

void * __cdecl _malloc_base (size_t size)

{
return _nh_malloc_base(size, _newmode);
}


/***
*void *_nh_malloc_base(size_t size) - Get a block of memory from the heap
*
*Purpose:
* Allocate of block of memory of at least size bytes from the heap and
* return a pointer to it.
*
* Calls the appropriate new handler (if installed).
*
* There are two distinct new handler schemes supported. The 'new' ANSI
* C++ scheme overrides the 'old' scheme when it is activated. A value of
* _NOPTH for the 'new' handler indicates that it is inactivated and the
* 'old' handler is then called.
*
*Entry:
* size_t size - size of block requested
*
*Exit:
* Success: Pointer to memory block
* Failure: NULL (or some error value)
*
*Uses:
*
*Exceptions:
*
*******************************************************************************/

void * __cdecl _nh_malloc_base (size_t size, int nhFlag)
{
void * pvReturn;

// validate size
if (size > _HEAP_MAXREQ)
return NULL;

#ifndef WINHEAP
/* round requested size */
size = _ROUND2(size, _GRANULARITY);
#endif /* WINHEAP */

for (;;) {

// allocate memory block
if (size <= _HEAP_MAXREQ)
pvReturn = _heap_alloc_base(size);
else
pvReturn = NULL;

// if successful allocation, return pointer to memory
// if new handling turned off altogether, return NULL

if (pvReturn || nhFlag == 0)
return pvReturn;

// call installed new handler
if (!_callnewh(size))
return NULL;

// new handler was successful -- try to allocate again
}
}

/***
*void *_heap_alloc_base(size_t size) - does actual allocation
*
*Purpose:
* Same as malloc() except the new handler is not called.
*
*Entry:
* See malloc
*
*Exit:
* See malloc
*
*Exceptions:
*
*******************************************************************************/

void * __cdecl _heap_alloc_base (size_t size)

{
#ifdef WINHEAP
void * pvReturn;
#else /* WINHEAP */
_PBLKDESC pdesc;
_PBLKDESC pdesc2;
#endif /* WINHEAP */


#ifdef WINHEAP

if (size <= __sbh_threshold)
{
_mlock(_HEAP_LOCK);
pvReturn = __sbh_alloc_block(size);
_munlock(_HEAP_LOCK);
if (pvReturn)
return pvReturn;
}

if (size == 0)
size = 1;
size = (size + BYTES_PER_PARA - 1) & ~(BYTES_PER_PARA - 1);
return HeapAlloc(_crtheap, 0, size);
}

#else /* WINHEAP */

/* try to find a big enough free block
*/
if ( (pdesc = _heap_search(size)) == NULL )
{
if ( _heap_grow(size) != -1 )
{
/* try finding a big enough free block again. the
* success of the call to _heap_grow should guarantee
* it, but...
*/
if ( (pdesc = _heap_search(size)) == NULL )
{
/* something unexpected, and very bad, has
* happened. abort!
*/
_heap_abort();
}
}
else
return NULL;
}

/* carve the block into two pieces (if necessary). the first piece
* shall be of the exact requested size, marked inuse and returned to
* the caller. the leftover piece is to be marked free.
*/
if ( _BLKSIZE(pdesc) != size ) {
/* split up the block and free the leftover piece back to
* the heap
*/
if ( (pdesc2 = _heap_split_block(pdesc, size)) != NULL )
_SET_FREE(pdesc2);
}

/* mark pdesc inuse
*/
_SET_INUSE(pdesc);

/* check proverdesc and reset, if necessary
*/

_heap_desc.proverdesc = pdesc->pnextdesc;

return( (void *)((char *)_ADDRESS(pdesc) + _HDRSIZE) );
}


/***
*_PBLKDESC _heap_split_block(pdesc, newsize) - split a heap allocation block
* into two allocation blocks
*
*Purpose:
* Split the allocation block described by pdesc into two blocks, the
* first one being of newsize bytes.
*
* Notes: It is caller's responsibilty to set the status (i.e., free
* or inuse) of the two new blocks, and to check and reset proverdesc
* if necessary. See Exceptions (below) for additional requirements.
*
*Entry:
* _PBLKDESC pdesc - pointer to the allocation block descriptor
* size_t newsize - size for the first of the two sub-blocks (i.e.,
* (i.e., newsize == _BLKSIZE(pdesc), on exit)
*
*Exit:
* If successful, return a pointer to the descriptor for the leftover
* block.
* Otherwise, return NULL.
*
*Exceptions:
* It is assumed pdesc points to a valid allocation block descriptor and
* newsize is a valid heap block size as is (i.e., WITHOUT rounding). If
* either of these of assumption is violated, _heap_split_block() will
* likely corrupt the heap. Note also that _heap_split_block will simply
* return to the caller if newsize >= _BLKSIZE(pdesc), on entry.
*
*******************************************************************************/

_PBLKDESC __cdecl _heap_split_block (
REG1 _PBLKDESC pdesc,
size_t newsize
)
{
REG2 _PBLKDESC pdesc2;

_ASSERTE(("_heap_split_block: bad pdesc arg", _CHECK_PDESC(pdesc)));
_ASSERTE(("_heap_split_block: bad newsize arg", _ROUND2(newsize,_GRANULARITY) == newsize));

/* carve the block into two pieces (if possible). the first piece
* is to be exactly newsize bytes.
*/
if ( (_BLKSIZE(pdesc) > newsize) && ((pdesc2 = __getempty())
!= NULL) )
{
/* set it up to manage the second piece and link it in to
* the list
*/
pdesc2->pblock = (void *)((char *)_ADDRESS(pdesc) + newsize +
_HDRSIZE);
*(void **)(pdesc2->pblock) = pdesc2;
pdesc2->pnextdesc = pdesc->pnextdesc;
pdesc->pnextdesc = pdesc2;

return pdesc2;
}
return NULL;
}

#endif /* WINHEAP */

jinzonghui 2009-07-15
  • 打赏
  • 举报
回复
学习。
akcw007 2009-07-15
  • 打赏
  • 举报
回复
依赖平台
海枫 2009-07-14
  • 打赏
  • 举报
回复
http://g.oswego.edu/dl/html/malloc.html

一个外国高手写的文章,非常适合你的要求。
独孤过儿 2009-07-14
  • 打赏
  • 举报
回复
malloc()和free()虽然是在标准C的函数库里面,但是实际的工作是通过系统调用来实现的

可以看minix或者linux的源码
Wolf0403 2009-07-14
  • 打赏
  • 举报
回复
TCPL 应该是第八(?)章,Unix 系统界面 里面有。
liao05050075 2009-07-14
  • 打赏
  • 举报
回复
http://baike.baidu.com/view/736228.htm
Nio96 2009-07-14
  • 打赏
  • 举报
回复
malloc的源码:

http://topic.csdn.net/u/20081107/17/a0e8e8d0-1b30-459e-a640-53966f3e7640.html

free的源代码:

struct mem_control_block {
int is_available; //这是一个标记
int size; //这是实际空间的大小
}

void free(void *ptr)
{
struct mem_control_block *free;
free = ptr - sizeof(struct mem_control_block);
free->is_available = 1;
return;
}
xiongzhijian 2009-07-14
  • 打赏
  • 举报
回复
up
lzy0001sl 2009-07-14
  • 打赏
  • 举报
回复
在C标准库函数中有这两个函数的源代码,我看过,由于代码太多1400行,我看不明白。如果楼主有毅力就看吧!标准库函数在CSDN的下载频道可以搜到!
pysjp 2009-07-14
  • 打赏
  • 举报
回复
GCC编译器中的libC目录中有,是提供了源码的,不过那只是Unix/Linux的实现,Windows估计不一样
JoyerHuang_悦 2009-07-14
  • 打赏
  • 举报
回复
无论是VC的CRT,还是GCC用的libc,malloc和free的源代码都是提供的,
但是你没有相关算法基础,查看起来也只是头痛。

我手头有本《Unix Internals 3rd》,其中的两章Memory相关算法讲得很
细,包括用户态的malloc实现,以及内核态下的brk或者VritualAlloc都
有描述。
luc_cj 2009-07-14
  • 打赏
  • 举报
回复
LZ得学习学习内存管理机制了。。。
ies_sweet 2009-07-14
  • 打赏
  • 举报
回复
malloc/free 是操作系统提供的接口
不同的系统可能使用不同的库
接口形式相同,但是实现方式可能不同
这主要取决于操作系统内存管理模式

一般来说
系统会维持一个全局的表,来表示那些内存是空闲,哪些已分配
当操作这个表时,需要获取互斥锁

这也是为什么不能在ISR中使用malloc的原因

具体的楼主可以搜索内存管理的内容来学习。
大前置 2009-07-14
  • 打赏
  • 举报
回复
http://topic.csdn.net/u/20090714/07/f7ddd06a-917b-42d0-9c99-ac4deac08904.html?21758
加载更多回复(1)
1. C 语言中的指针和内存泄漏 5 2. C语言难点分析整理 10 3. C语言难点 18 4. C/C++实现冒泡排序算法 32 5. C++中指针和引用的区别 35 6. const char*, char const*, char*const的区别 36 7. C中可变参数函数实现 38 8. C程序内存中组成部分 41 9. C编程拾粹 42 10. C语言中实现数组的动态增长 44 11. C语言中的位运算 46 12. 浮点数的存储格式: 50 13. 位域 58 14. C语言函数二维数组传递方法 64 15. C语言复杂表达式的执行步骤 66 16. C语言字符串函数大全 68 17. C语言宏定义技巧 89 18. C语言实现动态数组 100 19. C语言笔试-运算符和表达式 104 20. C语言编程准则之稳定篇 107 21. C语言编程常见问题分析 108 22. C语言编程易犯毛病集合 112 23. C语言缺陷与陷阱(笔记) 119 24. C语言防止缓冲区溢出方法 126 25. C语言高效编程秘籍 128 26. C运算符优先级口诀 133 27. do/while(0)的妙用 134 28. exit()和return()的区别 140 29. exit子程序终止函数与return的差别 141 30. extern与static存储空间矛盾 145 31. PC-Lint与C\C++代码质量 147 32. spirntf函数使用大全 158 33. 二叉树的数据结构 167 34. 位运算应用口诀和实例 170 35. 内存对齐与ANSI C中struct内存布局 173 36. 冒泡和选择排序实现 180 37. 函数指针数组与返回数组指针的函数 186 38. 右左法则- 复杂指针解析 189 39. 回车和换行的区别 192 40. 堆和堆栈的区别 194 41. 堆和堆栈的区别 198 42. 如何写出专业的C头文件 202 43. 打造最快的Hash表 207 44. 指针与数组学习笔记 222 45. 数组不是指针 224 46. 标准C中字符串分割的方法 228 47. 汉诺塔源码 231 48. 洗牌算法 234 49. 深入理解C语言指针的奥秘 236 50. 游戏外挂的编写原理 254 51. 程序实例分析-为什么会陷入死循环 258 52. 空指针究竟指向了内存的哪个地方 260 53. 算术表达式的计算 265 54. 结构体对齐的具体含义 269 55. 连连看AI算法 274 56. 连连看寻路算法的思路 283 57. 重新认识:指向函数的指针 288 58. 链表的源码 291 59. 高质量的子程序 295 60. 高级C语言程序员测试必过的十六道最佳题目+答案详解 297 61. C语言常见错误 320 62. 超强的指针学习笔记 325 63. 程序员之路──关于代码风格 343 64. 指针、结构体、联合体的安全规范 346 65. C指针讲解 352 66. 关于指向指针的指针 368 67. C/C++ 误区一:void main() 373 68. C/C++ 误区二:fflush(stdin) 376 69. C/C++ 误区三:强制转换 malloc() 的返回值 380 70. C/C++ 误区四:char c = getchar(); 381 71. C/C++ 误区五:检查 new 的返回值 383 72. C 是 C++ 的子集吗? 384 73. C和C++的区别是什么? 387 74. 无条件循环 388 75. 产生随机数的方法 389 76. 顺序表及其操作 390 77. 单链表的实现及其操作 391 78. 双向链表 395 79. 程序员数据结构笔记 399 80. Hashtable和HashMap的区别 408 81. hash 表学习笔记 410 82. C程序设计常用算法源代码 412 83. C语言有头结点链表的经典实现 419 84. C语言惠通面试题 428 85. C语言常用宏定义 450

70,026

社区成员

发帖
与我相关
我的任务
社区描述
C语言相关问题讨论
社区管理员
  • C语言
  • 花神庙码农
  • 架构师李肯
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧