org.apache.spark.rpc.RpcTimeoutException

福清仔 2017-04-28 11:14:40

spark job,只是有时候会报这个错,有时候不报。挺烦人的
...全文
1425 1 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
福清仔 2017-04-28
  • 打赏
  • 举报
回复
start=======2017-04-28 10:46:55======== hiveTable=accesslog,yesToday=2017-04-27 insert overwrite table accesslog partition(ds='2017-04-27') select info_accesstime,info_uvkey,info_procode,info_citycode,info_ip,info_host,info_uri,info_tmid,info_ajax,info_referer,info_osname,info_browser,info_device,info_processtime,info_status,datatype,systemid,info_params from tmpAccesslog 17/04/28 10:46:58 WARN TableInputFormatBase: initializeTable called multiple times. Overwriting connection and table reference; TableInputFormatBase will not close these old references when done. Moved: 'hdfs://nameservice1/user/sqoop/accesslog/2017-04-27/part-00000' to trash at: hdfs://nameservice1/user/hdfs/.Trash/Current Moved: 'hdfs://nameservice1/user/sqoop/accesslog/2017-04-27/part-00001' to trash at: hdfs://nameservice1/user/hdfs/.Trash/Current Moved: 'hdfs://nameservice1/user/sqoop/accesslog/2017-04-27/part-00002' to trash at: hdfs://nameservice1/user/hdfs/.Trash/Current 17/04/28 10:53:54 ERROR KeyProviderCache: Could not find uri with key [dfs.encryption.key.provider.uri] to create a keyProvider !! end============2017-04-28 10:53:56=============== 17/04/28 10:53:56 WARN AkkaRpcEndpointRef: Error sending message [message = RemoveExecutor(8,Yarn deallocated the executor 8 (container container_e25_1488345080058_11476_01_000009))] in 1 attempts org.apache.spark.rpc.RpcTimeoutException: Recipient[Actor[akka://sparkDriver/user/CoarseGrainedScheduler#1249792533]] had already been terminated.. This timeout is controlled by spark.rpc.askTimeout at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcEnv.scala:214) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcEnv.scala:229) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcEnv.scala:225) at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33) at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185) at scala.util.Try$.apply(Try.scala:161) at scala.util.Failure.recover(Try.scala:185) at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324) at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32) at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293) at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133) at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40) at scala.concurrent.impl.Promise$DefaultPromise.scala$concurrent$impl$Promise$DefaultPromise$$dispatchOrAddCallback(Promise.scala:280) at scala.concurrent.impl.Promise$DefaultPromise.onComplete(Promise.scala:270) at scala.concurrent.Future$class.recover(Future.scala:324) at scala.concurrent.impl.Promise$DefaultPromise.recover(Promise.scala:153) at org.apache.spark.rpc.akka.AkkaRpcEndpointRef.ask(AkkaRpcEnv.scala:319) at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:100) at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.removeExecutor(CoarseGrainedSchedulerBackend.scala:309) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receive$1.applyOrElse(YarnSchedulerBackend.scala:113) at org.apache.spark.rpc.akka.AkkaRpcEnv.org$apache$spark$rpc$akka$AkkaRpcEnv$$processMessage(AkkaRpcEnv.scala:177) at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1$$anonfun$receiveWithLogging$1$$anonfun$applyOrElse$4.apply$mcV$sp(AkkaRpcEnv.scala:126) at org.apache.spark.rpc.akka.AkkaRpcEnv.org$apache$spark$rpc$akka$AkkaRpcEnv$$safelyCall(AkkaRpcEnv.scala:197) at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1$$anonfun$receiveWithLogging$1.applyOrElse(AkkaRpcEnv.scala:125) at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33) at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33) at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25) at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:59) at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:42) at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118) at org.apache.spark.util.ActorLogReceive$$anon$1.applyOrElse(ActorLogReceive.scala:42) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Caused by: akka.pattern.AskTimeoutException: Recipient[Actor[akka://sparkDriver/user/CoarseGrainedScheduler#1249792533]] had already been terminated. at akka.pattern.AskableActorRef$.ask$extension(AskSupport.scala:134) at org.apache.spark.rpc.akka.AkkaRpcEndpointRef.ask(AkkaRpcEnv.scala:307) ... 24 more

1,271

社区成员

发帖
与我相关
我的任务
社区描述
Spark由Scala写成,是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于MapReduce算法实现的分布式计算。
社区管理员
  • Spark
  • shiter
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧