2,851
社区成员




层次聚类(或者叫做凝聚聚类)是另一个简单但是强大的聚类算法。其思想是基于成对距离建立一棵相似度树。该算法首先分组成为两个最近的对象(基于特征向量之间的距离),并且在一棵有着两个对象作为孩子的树中创建一个平均结点。然后在余下的结点中找到一个最近的pair,并且也包含任何平均节点,等等。在每一个结点,两个孩子之间的距离也会被存储。簇然后可以通过遍历这棵树并在距离比某个阈值小以至于决定聚类的大小的结点处停止来被提取出来。
层次聚类有几个优势。比如,树结构可以被用来可视化关系,并且显示簇是如何关联起来的。一个好的特征向量将得到树中好的分离。另一个优势是树可以在不同的簇阈值中被重用,而不需要重新计算树。缺点是需要选择一个阈值如果实际的簇需要的话。