为什么不同的机器学习领域都可以使用CNN,CNN解决了这些领域的哪些共性问题?是如何解决的?

程序员工作站小助手 2022-03-09 10:26:39

为什么不同的机器学习领域都可以使用CNN,CNN解决了这些领域的哪些共性问题?是如何解决的? 

...全文
2200 1 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
weixin_38498942 2022-03-10
  • 打赏
  • 举报
回复

CNN的关键是卷积运算,卷积核与卷积输入层进行局部连接可以获取整个输入的局部特征信息或者说是每个输入特征的组合特征。所以CNN的本质是完成了特征提取或者说是对原始特征的特征组合工作,从而增加模型的表达能力。不同领域的机器学习都是通过数据的特征进行建模,从而解决该领域的问题。故CNN解决了不同领域的特征提取问题,所用的方法是基于局部连接/权值共享/池化操作/多层次结构。

5,380

社区成员

发帖
与我相关
我的任务
社区描述
本论坛以AI、WoS 、XR、IoT、Auto、生成式AI等核心板块组成,为开发者提供便捷及高效的学习和交流平台。 高通开发者专区主页:https://qualcomm.csdn.net/
人工智能物联网机器学习 技术论坛(原bbs) 北京·东城区
社区管理员
  • csdnsqst0050
  • chipseeker
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧