对于分类问题,精度指标是否完全可靠?你通常使用哪些度量来评估你的模型?

海淀区藤原拓海 2022-05-11 15:38:25

对于分类问题,精度指标是否完全可靠?你通常使用哪些度量来评估你的模型?

...全文
2072 1 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
weixin_38498942 2022-05-12
  • 打赏
  • 举报
回复

对于一个类问题,有许多不同的评估方法。在准确性方面,该公式简单地用正确预测数据点的个数除以总数据。这听起来很合理,但在现实中,对于不平衡的数据问题,这个数量还不够显著。假设我们正在构建一个网络攻击的预测模型(假设攻击请求占请求总数的 1/100000)。

如果模型预测所有请求都是正常的,那么准确率也达到 99.9999%,而这个数字在分类模型中通常是不可靠的。上面的精度计算通常向我们展示了有多少百分比的数据是正确预测的,但并没有详细说明如何对每个类进行分类。相反,我们可以使用混淆矩阵。基本上,混淆矩阵显示了有多少数据点实际上属于一个类,并且被预测属于一个类。

2,853

社区成员

发帖
与我相关
我的任务
社区描述
本论坛以AI、WoS 、XR、IoT、Auto、生成式AI等核心板块组成,为开发者提供便捷及高效的学习和交流平台。 高通开发者专区主页:https://qualcomm.csdn.net/
人工智能物联网机器学习 技术论坛(原bbs) 北京·东城区
社区管理员
  • csdnsqst0050
  • chipseeker
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧