689
社区成员
如果希望能复刻类似ChatGPT这种效果令人惊艳的LLM模型,综合目前的各种研究结论,在做技术选型时需要重点权衡如下问题:
首先,在预训练模式上,我们有三种选择:GPT这种自回归语言模型,Bert这种双向语言模型,以及T5这种混合模式(Encoder-Decoder架构,在Encoder采取双向语言模型,Decoder采取自回归语言模型,所以是一种混合结构,但其本质仍属于Bert模式)。我们应选择GPT这种自回归语言模型,其原因在本文范式转换部分有做分析。目前看,国内LLM在做这方面技术选型的时候,貌似很多都走了Bert双向语言模型或T5混合语言模型的技术路线,很可能方向走偏了。
第二,强大的推理能力是让用户认可LLM的重要心理基础,而如果希望LLM能够具备强大的推理能力,根据目前经验,最好在做预训练的时候,要引入大量代码和文本一起进行LLM训练。至于其中的道理,在本文前面相关部分有对应分析。
第三,如果希望模型参数规模不要那么巨大,但又希望效果仍然足够好,此时有两个技术选项可做配置:要么增强高质量数据收集、挖掘、清理等方面的工作,意思是我模型参数可以是ChatGPT/GPT 4的一半,但是要想达到类似的效果,那么高质量训练数据的数量就需要是ChatGPT/GPT 4模型的一倍(Chinchilla的路子);另外一个可以有效减小模型规模的路线是采取文本检索(Retrieval based)模型+LLM的路线,这样也可以在效果相当的前提下,极大减少LLM模型的参数规模。这两个技术选型不互斥,反而是互补的,也即是说,可以同时采取这两个技术,在模型规模相对比较小的前提下,达到超级大模型类似的效果。
第四,超级大模型因为模型规模大,所以训练成本过高,导致很少有机构有能力去做这件事。而且由上文分析可见,继续不断推大LLM模型规模是肯定会发生、也应该去做的事情。于是,如何通过技术手段降低LLM的训练成本就很重要。LLM的特征抽取器Sparse化是有效降低模型训练及推理成本的技术选择。由此可见,随着模型越来越大,LLM模型Sparse化是一个应该考虑的选项。
第五,ChatGPT是目前最接近理想LLM的技术方案,而理想中的LLM应该是以一个几乎无所不能的基础通用大模型作为依托,来支持各种各样的上层任务类型。目前看,支持越来越多的任务类型,主要是通过增加LLM预训练数据的多样性来达成的,数据多样性越好,LLM能够支持的任务类型就越丰富。所以,应该重视通过增加数据多样性来增加LLM新能力的思路。
第六,易用的人机操作接口。人类用他们自己习惯的表达方式来描述任务,而LLM要能够理解这些Instruct的真实含义。另外,也要注意这些Instruct是符合人类真实需求的,就是说,要从最终用户那里收集任务表述方式,而不能靠研发人员自己的臆想或猜测。ChatGPT给我最大的启发其实是这一点,至于是否用增强学习我倒觉得不重要,其它替代技术应该也能做类似的事情。
转载自:[通向AGI之路:大型语言模型(LLM)技术精要](https://zhuanlan.zhihu.com/p/597586623)
https://bbs.csdn.net/topics/613485104 持续学习社区第五名,红包鼓励
我写了一篇国产“ChatGPT”与ChatGPT相比的文章,或许国内的更为值得期待。有兴趣的小伙伴可以阅读阅读
http://t.csdn.cn/8CA6M