硬件CRC校验和软件CRC校验的问题

ccbbcc 2023-05-23 15:59:42

我有一块STM32F303的板子,里面有CRC的例程。

代码如下:
 

#include "main.h"

/** @addtogroup STM32F3xx_HAL_Examples
  * @{
  */

/** @addtogroup CRC_Example
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define BUFFER_SIZE    114

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* CRC handler declaration */
CRC_HandleTypeDef   CrcHandle;

/* Used for storing CRC Value */
__IO uint32_t uwCRCValue = 0;

static const uint32_t aDataBuffer[BUFFER_SIZE] =
{
  0x00001021, 0x20423063, 0x408450a5, 0x60c670e7, 0x9129a14a, 0xb16bc18c,
  0xd1ade1ce, 0xf1ef1231, 0x32732252, 0x52b54294, 0x72f762d6, 0x93398318,
  0xa35ad3bd, 0xc39cf3ff, 0xe3de2462, 0x34430420, 0x64e674c7, 0x44a45485,
  0xa56ab54b, 0x85289509, 0xf5cfc5ac, 0xd58d3653, 0x26721611, 0x063076d7,
  0x569546b4, 0xb75ba77a, 0x97198738, 0xf7dfe7fe, 0xc7bc48c4, 0x58e56886,
  0x78a70840, 0x18612802, 0xc9ccd9ed, 0xe98ef9af, 0x89489969, 0xa90ab92b,
  0x4ad47ab7, 0x6a961a71, 0x0a503a33, 0x2a12dbfd, 0xfbbfeb9e, 0x9b798b58,
  0xbb3bab1a, 0x6ca67c87, 0x5cc52c22, 0x3c030c60, 0x1c41edae, 0xfd8fcdec,
  0xad2abd0b, 0x8d689d49, 0x7e976eb6, 0x5ed54ef4, 0x2e321e51, 0x0e70ff9f,
  0xefbedfdd, 0xcffcbf1b, 0x9f598f78, 0x918881a9, 0xb1caa1eb, 0xd10cc12d,
  0xe16f1080, 0x00a130c2, 0x20e35004, 0x40257046, 0x83b99398, 0xa3fbb3da,
  0xc33dd31c, 0xe37ff35e, 0x129022f3, 0x32d24235, 0x52146277, 0x7256b5ea,
  0x95a88589, 0xf56ee54f, 0xd52cc50d, 0x34e224c3, 0x04817466, 0x64475424,
  0x4405a7db, 0xb7fa8799, 0xe75ff77e, 0xc71dd73c, 0x26d336f2, 0x069116b0,
  0x76764615, 0x5634d94c, 0xc96df90e, 0xe92f99c8, 0xb98aa9ab, 0x58444865,
  0x78066827, 0x18c008e1, 0x28a3cb7d, 0xdb5ceb3f, 0xfb1e8bf9, 0x9bd8abbb,
  0x4a755a54, 0x6a377a16, 0x0af11ad0, 0x2ab33a92, 0xed0fdd6c, 0xcd4dbdaa,
  0xad8b9de8, 0x8dc97c26, 0x5c644c45, 0x3ca22c83, 0x1ce00cc1, 0xef1fff3e,
  0xdf7caf9b, 0xbfba8fd9, 0x9ff86e17, 0x7e364e55, 0x2e933eb2, 0x0ed11ef0
};

/* Expected CRC Value */
uint32_t uwExpectedCRCValue = 0x379E9F06;

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void Error_Handler(void);

/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F3xx HAL library initialization:
       - Configure the Flash prefetch
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure the system clock to 64 MHz */
  SystemClock_Config();

  /* Configure LED1 and LED3 */
  BSP_LED_Init(LED1);
  BSP_LED_Init(LED3);

  /*##-1- Configure the CRC peripheral #######################################*/
  CrcHandle.Instance = CRC;

  /* The default polynomial is used */
  CrcHandle.Init.DefaultPolynomialUse    = DEFAULT_POLYNOMIAL_ENABLE;

  /* The default init value is used */
  CrcHandle.Init.DefaultInitValueUse     = DEFAULT_INIT_VALUE_ENABLE;

  /* The input data are not inverted */
  CrcHandle.Init.InputDataInversionMode  = CRC_INPUTDATA_INVERSION_NONE;

  /* The output data are not inverted */
  CrcHandle.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;

  /* The input data are 32-bit long words */
  CrcHandle.InputDataFormat              = CRC_INPUTDATA_FORMAT_WORDS;

  if (HAL_CRC_Init(&CrcHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  /*##-2- Compute the CRC of "aDataBuffer" ###################################*/
  //uwCRCValue = HAL_CRC_Calculate(&CrcHandle, (uint32_t *)aDataBuffer, BUFFER_SIZE);
	uwCRCValue = HAL_CRC_Calculate(&CrcHandle, (uint32_t *)aDataBuffer, 1);

  /*##-3- Compare the CRC value to the Expected one ##########################*/
  if (uwCRCValue != uwExpectedCRCValue)
  {
    /* Wrong CRC value: Turn LED3 on */
    Error_Handler();
  }
  else
  {
    /* Right CRC value: Turn LED1 on */
    BSP_LED_On(LED1);
  }

  /* Infinite loop */
  while (1)
  {
  }
}

程序里有114个数据,比如我只用一个数据

得出结果0x4bb7ed3f

 

我找到一个软件,算出的结果和程序里一样。

 

可是我不知道手算怎么得出同样的结果。

哪位大神知道,望告知,谢谢!

 

...全文
620 8 打赏 收藏 转发到动态 举报
写回复
用AI写文章
8 条回复
切换为时间正序
请发表友善的回复…
发表回复
赵4老师 2023-05-24
  • 打赏
  • 举报
回复

参考zlib\crc32.c:

/* crc32.c -- compute the CRC-32 of a data stream
 * Copyright (C) 1995-2006, 2010 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 *
 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
 * tables for updating the shift register in one step with three exclusive-ors
 * instead of four steps with four exclusive-ors.  This results in about a
 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
 */

/* @(#) $Id$ */

/*
  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
  protection on the static variables used to control the first-use generation
  of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
  first call get_crc_table() to initialize the tables before allowing more than
  one thread to use crc32().
 */

#ifdef MAKECRCH
#  include <stdio.h>
#  ifndef DYNAMIC_CRC_TABLE
#    define DYNAMIC_CRC_TABLE
#  endif /* !DYNAMIC_CRC_TABLE */
#endif /* MAKECRCH */

#include "zutil.h"      /* for STDC and FAR definitions */

#define local static

/* Find a four-byte integer type for crc32_little() and crc32_big(). */
#ifndef NOBYFOUR
#  ifdef STDC           /* need ANSI C limits.h to determine sizes */
#    include <limits.h>
#    define BYFOUR
#    if (UINT_MAX == 0xffffffffUL)
       typedef unsigned int u4;
#    else
#      if (ULONG_MAX == 0xffffffffUL)
         typedef unsigned long u4;
#      else
#        if (USHRT_MAX == 0xffffffffUL)
           typedef unsigned short u4;
#        else
#          undef BYFOUR     /* can't find a four-byte integer type! */
#        endif
#      endif
#    endif
#  endif /* STDC */
#endif /* !NOBYFOUR */

/* Definitions for doing the crc four data bytes at a time. */
#ifdef BYFOUR
#  define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \
                (((w)&0xff00)<<8)+(((w)&0xff)<<24))
   local unsigned long crc32_little OF((unsigned long,
                        const unsigned char FAR *, unsigned));
   local unsigned long crc32_big OF((unsigned long,
                        const unsigned char FAR *, unsigned));
#  define TBLS 8
#else
#  define TBLS 1
#endif /* BYFOUR */

/* Local functions for crc concatenation */
local unsigned long gf2_matrix_times OF((unsigned long *mat,
                                         unsigned long vec));
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2);


#ifdef DYNAMIC_CRC_TABLE

local volatile int crc_table_empty = 1;
local unsigned long FAR crc_table[TBLS][256];
local void make_crc_table OF((void));
#ifdef MAKECRCH
   local void write_table OF((FILE *, const unsigned long FAR *));
#endif /* MAKECRCH */
/*
  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.

  Polynomials over GF(2) are represented in binary, one bit per coefficient,
  with the lowest powers in the most significant bit.  Then adding polynomials
  is just exclusive-or, and multiplying a polynomial by x is a right shift by
  one.  If we call the above polynomial p, and represent a byte as the
  polynomial q, also with the lowest power in the most significant bit (so the
  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
  where a mod b means the remainder after dividing a by b.

  This calculation is done using the shift-register method of multiplying and
  taking the remainder.  The register is initialized to zero, and for each
  incoming bit, x^32 is added mod p to the register if the bit is a one (where
  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
  x (which is shifting right by one and adding x^32 mod p if the bit shifted
  out is a one).  We start with the highest power (least significant bit) of
  q and repeat for all eight bits of q.

  The first table is simply the CRC of all possible eight bit values.  This is
  all the information needed to generate CRCs on data a byte at a time for all
  combinations of CRC register values and incoming bytes.  The remaining tables
  allow for word-at-a-time CRC calculation for both big-endian and little-
  endian machines, where a word is four bytes.
*/
local void make_crc_table()
{
    unsigned long c;
    int n, k;
    unsigned long poly;                 /* polynomial exclusive-or pattern */
    /* terms of polynomial defining this crc (except x^32): */
    static volatile int first = 1;      /* flag to limit concurrent making */
    static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};

    /* See if another task is already doing this (not thread-safe, but better
       than nothing -- significantly reduces duration of vulnerability in
       case the advice about DYNAMIC_CRC_TABLE is ignored) */
    if (first) {
        first = 0;

        /* make exclusive-or pattern from polynomial (0xedb88320UL) */
        poly = 0UL;
        for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
            poly |= 1UL << (31 - p[n]);

        /* generate a crc for every 8-bit value */
        for (n = 0; n < 256; n++) {
            c = (unsigned long)n;
            for (k = 0; k < 8; k++)
                c = c & 1 ? poly ^ (c >> 1) : c >> 1;
            crc_table[0][n] = c;
        }

#ifdef BYFOUR
        /* generate crc for each value followed by one, two, and three zeros,
           and then the byte reversal of those as well as the first table */
        for (n = 0; n < 256; n++) {
            c = crc_table[0][n];
            crc_table[4][n] = REV(c);
            for (k = 1; k < 4; k++) {
                c = crc_table[0][c & 0xff] ^ (c >> 8);
                crc_table[k][n] = c;
                crc_table[k + 4][n] = REV(c);
            }
        }
#endif /* BYFOUR */

        crc_table_empty = 0;
    }
    else {      /* not first */
        /* wait for the other guy to finish (not efficient, but rare) */
        while (crc_table_empty)
            ;
    }

#ifdef MAKECRCH
    /* write out CRC tables to crc32.h */
    {
        FILE *out;

        out = fopen("crc32.h", "w");
        if (out == NULL) return;
        fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
        fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
        fprintf(out, "local const unsigned long FAR ");
        fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
        write_table(out, crc_table[0]);
#  ifdef BYFOUR
        fprintf(out, "#ifdef BYFOUR\n");
        for (k = 1; k < 8; k++) {
            fprintf(out, "  },\n  {\n");
            write_table(out, crc_table[k]);
        }
        fprintf(out, "#endif\n");
#  endif /* BYFOUR */
        fprintf(out, "  }\n};\n");
        fclose(out);
    }
#endif /* MAKECRCH */
}

#ifdef MAKECRCH
local void write_table(out, table)
    FILE *out;
    const unsigned long FAR *table;
{
    int n;

    for (n = 0; n < 256; n++)
        fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ", table[n],
                n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
}
#endif /* MAKECRCH */

#else /* !DYNAMIC_CRC_TABLE */
/* ========================================================================
 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
 */
#include "crc32.h"
#endif /* DYNAMIC_CRC_TABLE */

/* =========================================================================
 * This function can be used by asm versions of crc32()
 */
const unsigned long FAR * ZEXPORT get_crc_table()
{
#ifdef DYNAMIC_CRC_TABLE
    if (crc_table_empty)
        make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
    return (const unsigned long FAR *)crc_table;
}

/* ========================================================================= */
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1

/* ========================================================================= */
unsigned long ZEXPORT crc32(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    uInt len;
{
    if (buf == Z_NULL) return 0UL;

#ifdef DYNAMIC_CRC_TABLE
    if (crc_table_empty)
        make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */

#ifdef BYFOUR
    if (sizeof(void *) == sizeof(ptrdiff_t)) {
        u4 endian;

        endian = 1;
        if (*((unsigned char *)(&endian)))
            return crc32_little(crc, buf, len);
        else
            return crc32_big(crc, buf, len);
    }
#endif /* BYFOUR */
    crc = crc ^ 0xffffffffUL;
    while (len >= 8) {
        DO8;
        len -= 8;
    }
    if (len) do {
        DO1;
    } while (--len);
    return crc ^ 0xffffffffUL;
}

#ifdef BYFOUR

/* ========================================================================= */
#define DOLIT4 c ^= *buf4++; \
        c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
            crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4

/* ========================================================================= */
local unsigned long crc32_little(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    unsigned len;
{
    register u4 c;
    register const u4 FAR *buf4;

    c = (u4)crc;
    c = ~c;
    while (len && ((ptrdiff_t)buf & 3)) {
        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
        len--;
    }

    buf4 = (const u4 FAR *)(const void FAR *)buf;
    while (len >= 32) {
        DOLIT32;
        len -= 32;
    }
    while (len >= 4) {
        DOLIT4;
        len -= 4;
    }
    buf = (const unsigned char FAR *)buf4;

    if (len) do {
        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
    } while (--len);
    c = ~c;
    return (unsigned long)c;
}

/* ========================================================================= */
#define DOBIG4 c ^= *++buf4; \
        c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
            crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4

/* ========================================================================= */
local unsigned long crc32_big(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    unsigned len;
{
    register u4 c;
    register const u4 FAR *buf4;

    c = REV((u4)crc);
    c = ~c;
    while (len && ((ptrdiff_t)buf & 3)) {
        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
        len--;
    }

    buf4 = (const u4 FAR *)(const void FAR *)buf;
    buf4--;
    while (len >= 32) {
        DOBIG32;
        len -= 32;
    }
    while (len >= 4) {
        DOBIG4;
        len -= 4;
    }
    buf4++;
    buf = (const unsigned char FAR *)buf4;

    if (len) do {
        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
    } while (--len);
    c = ~c;
    return (unsigned long)(REV(c));
}

#endif /* BYFOUR */

#define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */

/* ========================================================================= */
local unsigned long gf2_matrix_times(mat, vec)
    unsigned long *mat;
    unsigned long vec;
{
    unsigned long sum;

    sum = 0;
    while (vec) {
        if (vec & 1)
            sum ^= *mat;
        vec >>= 1;
        mat++;
    }
    return sum;
}

/* ========================================================================= */
local void gf2_matrix_square(square, mat)
    unsigned long *square;
    unsigned long *mat;
{
    int n;

    for (n = 0; n < GF2_DIM; n++)
        square[n] = gf2_matrix_times(mat, mat[n]);
}

/* ========================================================================= */
local uLong crc32_combine_(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off64_t len2;
{
    int n;
    unsigned long row;
    unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
    unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */

    /* degenerate case (also disallow negative lengths) */
    if (len2 <= 0)
        return crc1;

    /* put operator for one zero bit in odd */
    odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
    row = 1;
    for (n = 1; n < GF2_DIM; n++) {
        odd[n] = row;
        row <<= 1;
    }

    /* put operator for two zero bits in even */
    gf2_matrix_square(even, odd);

    /* put operator for four zero bits in odd */
    gf2_matrix_square(odd, even);

    /* apply len2 zeros to crc1 (first square will put the operator for one
       zero byte, eight zero bits, in even) */
    do {
        /* apply zeros operator for this bit of len2 */
        gf2_matrix_square(even, odd);
        if (len2 & 1)
            crc1 = gf2_matrix_times(even, crc1);
        len2 >>= 1;

        /* if no more bits set, then done */
        if (len2 == 0)
            break;

        /* another iteration of the loop with odd and even swapped */
        gf2_matrix_square(odd, even);
        if (len2 & 1)
            crc1 = gf2_matrix_times(odd, crc1);
        len2 >>= 1;

        /* if no more bits set, then done */
    } while (len2 != 0);

    /* return combined crc */
    crc1 ^= crc2;
    return crc1;
}

/* ========================================================================= */
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off_t len2;
{
    return crc32_combine_(crc1, crc2, len2);
}

uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off64_t len2;
{
    return crc32_combine_(crc1, crc2, len2);
}


ccbbcc 2023-05-25
  • 举报
回复
@赵4老师 谢谢赵4老师!辛苦你了。咱们论坛能不能选择最佳答案呀?
ccbbcc 2023-05-27
  • 举报
回复
@赵4老师 赵4老师,我用devc++软件,C工程,提示找不到zutil.h
ccbbcc 2023-05-27
  • 举报
回复
@赵4老师 赵4老师,这是不是linux的代码呀?太难懂了
赵4老师 2023-05-24
  • 打赏
  • 举报
回复

你需要看HAL_CRC_Calculate的实现

ccbbcc 2023-05-24
  • 举报
回复
@赵4老师 我看了,这个看不出来的,是硬件CRC,设置好在之后,自动出数。
庸人_自扰之 2023-05-23
  • 打赏
  • 举报
回复

你的意思是需要一个工具计算出aDataBuffer 对应的crc值吗
可以用http://www.ip33.com/crc.html .

ccbbcc 2023-05-23
  • 举报
回复
@庸人_自扰之 谢谢!你理解错了,我想知道计算的过程。比如单片机使用硬件CRC,上位机使用软件CRC,怎么得出和硬件CRC一样的结果。
前言最近随着计算机的发展,软件日益更新,有很多公司发布的产品遭到篡改和破解,在总众多年的历史种逐渐形成了软件保护与软件破解之间的对抗产生了软件逆向工程这本门技术将在如下的课程讲解各种软件逆向知识,软件保护知识,已经破解脱壳反调试知识,为初期学软件逆向不懂而又迷茫的同学门指明一条道路此套课堂能有效帮助同学们解决软件逆向中所遇到的大部分问题大纲软件逆向工程高级班分为反调试篇汇编篇算法篇补丁篇HOOK篇将在如上这几篇对软件逆向的各个方面进行详解,包括网络验证的分析思路,封包算法的提取,以及各种软件保护技术,无论哪一篇都会从诸多个方面的细节进行详解反调试篇:分为PEB,时间校验CRC,NtQuery函数,内核过渡等知识要领与诸多方面的综合性详解,细节分为每一节课,每一节课目标清晰无比,每一节深入精髓进行讲解!汇编篇:一个程序编译完成之后是如何通过在计算机运行起来的,其中少不了底层知识的汇编指令,汇编篇中将深入浅出的带领同学们对MASM32SDK的一套汇编库中开发程序,熟悉汇编的原理,如何运用汇编写出一套花指令,并且去除指令,方便以后的算法学习以及为今后的学习打下坚实的基础算法篇:随着编程语言的发展,编程语言的标准也在发展,一些编译器善于运用数学的手法,对程序进行各种优化,然后我们进行分析,我们得需要一步步还原这个优化或清晰了解这个优化才有可能掌握这个数学模型优化,进一步还原代码,算法篇知识要领将在优化,技巧这方面表现的玲离尽致!此篇会带领同学们分析多个语言的算法,包括C/C++算法还原代码还原易语言代码还原 算分开库的实现,制作自己的第一个注册机等!补丁篇:说到补丁,同学们可能第一个想到的就是对方一些网络验证所用到的技巧,我的课程这一方面虽有涉及,但是补丁技术远远不止这一点,我的课程会详解更多的补丁知识原理,包括什么是补丁,补丁的真正概念,前辈们是如何善用补丁对程序的漏洞进行修补损坏的程序。将在此篇一一介绍HOOK篇:详细详解了各种HOOK的原理以及实现代码,包括网上流行所说的超级HOOK,COMHOOK,协议HOOK,代理中转等方法,怎么定位关键位置,环境的保存知识要领,hook关键的注意事项,为自己以后做hook行业打下坚实的基础课程每一个细节讲究的深入骨髓,通俗易懂的学习方式,全程贯彻原理,软件逆向中必不可少少的教程!

69,382

社区成员

发帖
与我相关
我的任务
社区描述
C语言相关问题讨论
社区管理员
  • C语言
  • 花神庙码农
  • 架构师李肯
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧