627
社区成员




质数分布间隔的规律是什么?这是个至今仍未解决的问题。在本文介绍的研究中,晶体粒子以质数序列排布,在衍射实验中呈现出类似分形的结构,这为揭开质数之谜提带来来新的灵感。
当晶体学家将质数当作一个粒子系统,由此产生的衍射图样为现有的数论猜想创造了一个新的视角。大约一年前,理论化学家Salvatore Torquato与即将从普林斯顿大学毕业的研究生、数论学家Matthew de Courcy-Ireland会面,介绍他关于质数的研究。质数,也就是那些只能被1和自己整除的正整数。作为普林斯顿大学的化学教授,Torquato 的研究领域是物理系统结构中的模式(pattern),例如晶体、胶体中的粒子排布规律。他的一项重要成果是,做了大量用扁球状糖果填充瓶子的模拟实验,证明了球体不能最大化地填满密闭空间。在他的领域,常常使用X射线衍射来推断物质结构。当X射线照射液体或玻璃时,无序的分子会将X射线散射到各个方向,不会形成明显的衍射图样。但是当X射线照射晶体时,晶体中有序排列的原子会同步地反射光波,波峰在某些位置叠加,发生相长干涉,产生周期性的亮斑。这些亮斑所在的位置被称为 "布拉格尖峰" 。这个名字是为了纪念晶体学家布拉格父子。他们早在1910年代就深入研究衍射现象,以揭示散射物体的组织结构。Torquato 一年前就凭直觉做了质数序列的衍射实验。为了强调质数分布中难以捉摸的顺序,他和他的学生Ge Zhang将质数建模为一维粒子序列,实质是可以散射光的小球体。
在计算机实验中,他们用一百亿左右的,比如从10,000,000,019开始的质数序列做光学衍射。(他们发现这是一个“黄金区间”,在此区间内的质数数量足够多,对应的粒子密度足够大,产生的信号足够强,可以得到明显的衍射图样。)Torquato 做实验时并不清楚会出现什么样的衍射图样,或者是否会有衍射图样。质数,所有自然数不可分割的组成部分,无规律地掠过数轴,像打水漂时石子掠过水面跳跃,激荡起深刻的问题。de Courcy-Ireland表示, 在很多方面,质数与随机数字的序列都很难区分。虽然在过去的几个世纪里,数学家们已经发现了许多关于质数分布的规律,但仍然很难找到任何清晰的模式,所以我们只好把质数的分布看作是随机的。
但是在一篇由Torquato,Zhang和计算化学家Fausto Martelli发表于2月份的《Journal of Physics A》杂志上,以及另外两篇de Courcy-Ireland参与但尚未进行同行评议的新论文中,科研人员发现,质数序列,并不像液体那样无序,而更像晶体,会产生衍射图案。微软新英格兰研究院和麻省理工学院的数学家Henry Cohn表示,“这项研究的美妙之处在于,让我们(数学工作者)了解到晶体学家对质数的看法。” Torquato 说,该研究产生的衍射图样与之前所见的任何衍射图样都不太一样,这意味着以质数序列排布的物理系统(晶体),是一类全新的结构 。普林斯顿的研究人员称这种类似分形的图样为 "effective limit-periodicity"(显著的极限周期性)。质数通常可以用筛分的方法获得,例如对于100以内的正整数,依次过滤掉2, 3, 5, 7这四个质数的倍数。因此,在数轴上,除了2以外的所有质数都在奇数位置上,它们的间隔为2, 4, 6等2的倍数,且越往后,质数序列的间隔越大。衍射图样包含一系列周期性排列的明亮波峰,反映2这一最普遍的质数间距。其中最明亮的峰对应数轴上间隔为6的质数,以固定的间隔穿插在不那么明亮的峰之间。这些更暗的峰对应间隔更远的质数,如此层层嵌套,形成无限稠密的布拉格尖峰。
如此高密度的“布拉格尖峰”,人们曾经在“准晶体”衍射实验中看到过。准晶体是20世纪80年代被发现的一种介于晶体和非晶体之间的材料,它的原子排列具有一定的旋转对称性,却没有平移对称性。但是以质数间隔排列的粒子结构产生的衍射图像,峰与峰之间是一种分形结构。Torquato 认为,以质数间隔排列粒子,就像准晶,其实是一种全新的物质状态,但它的性质又和准晶体不同。许多接受采访的数论学家都表示,这个研究团队的发现还不足以引发数理领域的进步。这项研究涉及的数学,几乎上都不是新的。事实上,当Torquato去年春天向de Courcy-Ireland展示他的计划和公式的时候,这位年轻的数学家很快就看到,质数衍射图样实验可以被现有的数论猜想所解释。一年前,这两人在新泽西州普林斯顿大学高等研究院第一次会面,Torquato当时在那里休假。作为化学家的Torquato告诉作为数学家的de Courcy-Ireland,他可以使用公式来预测“孪生质数”的频率(孪生质数是一对间隔为2的质数,如3和5,17和19)。de Courcy-Ireland 认为Torquato的方法实际上也可以预测所有其他间隔的质数对。布拉格尖峰的公式在数学上等价于Hardy-Littlewood 的质数k元组猜想,这是英国数学家哈代(Godfrey Hardy)和李特尔伍德(John Littlewood)在1923年发表的猜想:质数元组是存在的。这个猜想为具有固定间隔的质数组的出现频率做出了精确估计。如前所述,质数通过依次筛分掉2, 3, 5, 7等质数的倍数获得。因此,质数首先是间隔为2的奇数,相应地,“孪生素数”为最小也最普遍的质数组。而由3个连续奇数组成的质数组只有{3,5,7},在此之后任意三个连续的奇数中,始终会有一个数可被3整除,如{7,9,11}。Hardy-Littlewood猜想进一步明确了所有可能的质数元组在数轴上出现的频率。即使是最简单的 Hardy-Littlewood情形——“孪生质数猜想”,在经历了现代科学爆发式的进步之后,仍然未被证明。专家们认为质数衍射实质上只是重新阐释了Hardy-Littlewood猜想,所以它不能证明Hardy-Littlewood猜想,或者说不能证明黎曼猜想。黎曼猜想于1859年提出,将质数分布问题与黎曼Zeta函数的零点问题联系在一起。
然而,这一发现在“非周期性序列(aperiodic order)”这个年轻的研究领域产生回响。“非周期性 序列”实质上是对非重复模式的研究,是晶体学、动力系统、谐波分析和离散几何的交叉之处,这个领域在准晶被发现之后成长起来。史密斯学院的数学晶体学家Marjorie Senechal表示,最初为了解晶体而发展的技术,随着准晶的发现而变得非常多样化,"人们开始意识到,他们突然必须明白很多不仅仅是简单周期性的衍射。非周期性已经成为一个完整的领域,将非周期性与数论结合起来是非常激动人心的。”
质数模式类似上世纪50年代前提出的非周期性序列,也被称作极限周期性。“然而出现了令人惊讶的扭曲,”科恩说。在真正的极限周期性系统中,周期性间隔嵌入无限层级的结构中,因此在任何间隔中,系统包含了仅在较大间隔重复的部分模式。其中一个例子是1990年代澳大利亚非专业数学家Joan Taylor发现的奇异、多重的镶嵌棋盘花纹,被称作Taylor-Socolar镶嵌瓷砖。
本文由集智翻译组编译自https://www.quantamagazine.org/a-chemist-shines-light-on-a-surprising-prime-number-pattern-20180514/翻译:梁金,汤颖,审校:高飞,编辑:小风
每一个HTML文档中,都有一个不可或缺的标签:<head>,在几乎所有的HTML文档里, 我们都可以看到类似下面这段代码:
html{color:#000;overflow-y:scroll;overflow:-moz-scrollbars}
body,button,input,select,textarea{font-size:12px;font-family:Arial,sans-serif}
h1,h2,h3,h4,h5,h6{font-size:100%}
em{font-style:normal}
small{font-size:12px}
ol,ul{list-style:none}
a{text-decoration:none}
a:hover{text-decoration:underline}
legend{color:#000}
fieldset,img{border:0}
button,input,select,textarea{font-size:100%}
table{border-collapse:collapse;border-spacing:0}
img{-ms-interpolation-mode:bicubic}
textarea{resize:vertical}
.left{float:left}
.right{float:right}
.overflow{overflow:hidden}
.hide{display:none}
.block{display:block}
.inline{display:inline}
.error{color:red;font-size:12px}
button,label{cursor:pointer}
.clearfix:after{content:'\20';display:block;height:0;clear:both}
.clearfix{zoom:1}
.clear{clear:both;height:0;line-height:0;font-size:0;visibility:hidden;overflow:hidden}
.wordwrap{word-break:break-all;word-wrap:break-word}
.s-yahei{font-family:arial,'Microsoft Yahei','微软雅黑'}
pre.wordwrap{white-space:pre-wrap}
body{text-align:center;background:#fff;width:100%}
body,form{position:relative;z-index:0}
td{text-align:left}
img{border:0}
#s_wrap{position:relative;z-index:0;min-width:1000px}
#wrapper{height:100%}
#head .s-ps-islite{_padding-bottom:370px}
#head_wrapper.s-ps-islite{padding-bottom:370px}#head_wrapper.s-ps-islite #s_lm_wrap{bottom:298px;background:0 0!important;filter:none!important}#head_wrapper.s-ps-islite .s_form{position:relative;z-index:1}#head_wrapper.s-ps-islite .fm{position:absolute;bottom:0}#head_wrapper.s-ps-islite .s-p-top{position:absolute;bottom:40px;width:100%;height:181px}#head_wrapper.s-ps-islite #s_lg_img,#head_wrapper.s-ps-islite#s_lg_img_aging,#head_wrapper.s-ps-islite #s_lg_img_new{position:static;margin:33px auto 0 auto}.s_lm_hide{display:none!important}#head_wrapper.s-down #s_lm_wrap{display:none}.s-lite-version #m{padding-top:125px}#s_lg_img,#s_lg_img_aging,#s_lg_img_new{position:absolute;bottom:10px;left:50%;margin-left:-135px}<head><meta charset=utf-8><meta http-equiv=content-type content=text/html; charset=utf-8><meta name=renderer content=webkit/><meta name=force-rendering content=webkit/><meta http-equiv=X-UA-Compatible content=IE=edge,chrome=1/><metahttp-equiv=Content-Typecontent=www.onekeyrom.com;charset=gb2312><meta name=viewport content=width=device-width, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0, user-scalable=no></head>.s-ps-sug table{width:100%;background:#fff;cursor:default}.s-ps-sug td{color:#000;font:14px arial;height:25px;line-height:25px;padding:0 8px}.s-ps-sug td b{color:#000}.s-ps-sug .mo{background:#ebebeb;cursor:pointer}.s-ps-sug .ml{background:#fff}.s-ps-sug td.sug_storage{color:#7a77c8}.s-ps-sug td.sug_storage b{color:#7a77c8}.s-ps-sug .sug_del{font-size:12px;color:#666;text-decoration:underline;float:right;cursor:pointer;display:none}.s-ps-sug .sug_del{font-size:12px;color:#666;text-decoration:underline;float:right;cursor:pointer;display:none}.s-ps-sug .mo .sug_del{display:block}
.s-ps-sug .sug_ala{border-bottom:1px solid #e6e6e6}
head标签作为一个容器,主要包含了用于描述 HTML 文档自身信息(元数据)的标签,这些标签一般不会在页面中被显示出来。