Unit4 Library(The ~~Best~~ Unit)

黄融亮-21373488 学生 2023-06-20 19:27:06

总结本单元所实践的正向建模与开发

本单元正向建模过程较为曲折,在hw13时经历了两版uml后我发现细节无法处理于是都重构了。在绘制第三版时,先将分离于题面、评论区、微信群的需求统合起来,没说明的情况就自己脑补出来,这是第一步(耗时最长的一步)。
第二步是,划分出大致的类和每个类的职责,并将执行职责的行为方法,相关成员字段设计好,高重合的部分就抽象出interface(我原以为本单元图测评强制要求出现interface),最后把这个框架画到classuml上。
第三步照着这个架构实现代码,这时候会遇到一些细节问题导致框架的修改,但是基本都是添加,如果出现大面积删除或者修改,那就是第二步做的比较烂
第四步是修正classuml, 使其能通过图评测

总结本单元作业的架构设计

hw13和hw14、hw15架构基本相同,不过hw13是将记录分散于各个管理员手中,从hw14起新建数据库类对借阅信息进行管理,并达到类似管理员之间记录联网的效果。

以下直接立足hw15进行架构说明

数据:

  • 书籍: 物理意义上的书籍,只记录书的名字和所属图书馆
  • 记录: 记录借阅信息,包括书本、学生、时间、状态
    架构从模拟实际出发,书本自身不具备丢失和损坏状态,现实中丢失和损坏也并不会给出,只有在归还时才能发现,这里做一个改变,将借出书籍状态计入记录,损坏对应修改状态,丢失直接删记录

设施:

  • 图书管理系统: 管理时钟,并且判定开馆,闭馆以及整理日的到来,拥有一个图书馆表和全系统允许跨校区借阅图书的信息表
  • 图书馆: 协调管理员,拥有一个书架和一个数据库,负责指令解析执行以及支持管理员之间的交流
  • 数据库: 为每个图书馆所私有,赋值 查、删、增 借阅和预订信息
  • 书架: 管理书籍,判定书籍如今有无,有过没有

员工:

职责都在题中,很容易确认,此外每个员工(除了整理管理员外)都有一个阻塞书队列,等待整理日时进行回收借出或者上架

下附三张uml图

hw13:

img

hw14:

img

hw15:
与hw14几乎一致,因为题目要求强制改了两个方法名

对比分析最终的代码设计和UML模型设计之间的追踪关系

类名最后都是手敲的,并将代码中有的都画在图上了,uml和我的代码是相互指导的,所以一致性应该是很高的(为了通过测试必须用代码指导类图)

总结自己在四个单元中架构设计思维的演进

架构设计思维从之前的 封装经验 趋向 功能划分、分工细小、数据与行为分离等方向,突出的就是一个建模思想的增强。
除了Unit3中架构设计不是自己做的,几乎每一单元我都会在第二次作业进行小重构,主要是猜测第三次迭代方向(除了Unit4捉摸不透,Unit1、Unit2都猜得八九不离十),将自己目前的设计思路进行整理和划分,将耦合度降下来,并使得架构更清晰,更便于第三次迭代(没有任何一个单元在第三次重构了一丁点,也是达到了一些预期)

总结自己在四个单元中测试思维的演进

最开始是无规则的数据对拍,后来逐步学习测试方法,学会了:

  1. 将上次强测拷下来跑做回归测试
  2. 增加不规则输入和超越课程组数据规模的数据测试
  3. 在Unit2尝试生成攻击特定点数据
  4. 单元测试,Unit3在错了第一次作业的OKtest(原因是ValueSet写成KeySet)后,知道对一些不确信的版块进行单元测试

总结自己的课程收获

  1. 进一步积累了编码经验
  2. 学会了一些架构的方法(重点)
  3. 学会忍受用户无理取闹的需求
  4. 学到了一些面向对象的思维方法
  5. 坚持了一些个人追求(课程要求本质还是做一个玩具,看看Unit1的数据要求就知道了,一些同学的代码根本无法支持日常小数据的使用)
...全文
90 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
Your class library works, but could it be better? Refactoring: Improving the Design of Existing Code shows how refactoring can make object-oriented code simpler and easier to maintain. Today refactoring requires considerable design know-how, but once tools become available, all programmers should be able to improve their code using refactoring techniques. Besides an introduction to refactoring, this handbook provides a catalog of dozens of tips for improving code. The best thing about Refactoring is its remarkably clear presentation, along with excellent nuts-and-bolts advice, from object expert Martin Fowler. The author is also an authority on software patterns and UML, and this experience helps make this a better book, one that should be immediately accessible to any intermediate or advanced object-oriented developer. (Just like patterns, each refactoring tip is presented with a simple name, a "motivation," and examples using Java and UML.) Early chapters stress the importance of testing in successful refactoring. (When you improve code, you have to test to verify that it still works.) After the discussion on how to detect the "smell" of bad code, readers get to the heart of the book, its catalog of over 70 "refactorings"--tips for better and simpler class design. Each tip is illustrated with "before" and "after" code, along with an explanation. Later chapters provide a quick look at refactoring research. Like software patterns, refactoring may be an idea whose time has come. This groundbreaking title will surely help bring refactoring to the programming mainstream. With its clear advice on a hot new topic, Refactoring is sure to be essential reading for anyone who writes or maintains object-oriented software. --Richard Dragan Topics Covered: Refactoring, improving software code, redesign, design tips, patterns, unit testing, refactoring research, and tools.
Giuseppe Ciaburro; Balaji Venkateswaran 著 Neural Network and Artificial Intelligence Concepts Introduction Inspiration for neural networks How do neural networks work? Layered approach Weights and biases Training neural networks Supervised learning Unsupervised learning Epoch Activation functions Different activation functions Linear function Unit step activation function Sigmoid Hyperbolic tangent Rectified Linear Unit Which activation functions to use? Perceptron and multilayer architectures Forward and backpropagation Step-by-step illustration of a neuralnet and an activation function Feed-forward and feedback networks Gradient descent Taxonomy of neural networks Simple example using R neural net library - neuralnet() Let us go through the code line-by-line Implementation using nnet() library Let us go through the code line-by-line Deep learning Pros and cons of neural networks Pros Cons Best practices in neural network implementations Quick note on GPU processing Summary Learning Process in Neural Networks What is machine learning? Supervised learning Unsupervised learning Reinforcement learning Training and testing the model The data cycle Evaluation metrics Confusion matrix True Positive Rate True Negative Rate Accuracy Precision and recall F-score Receiver Operating Characteristic curve Learning in neural networks Back to backpropagation Neural network learning algorithm optimization Supervised learning in neural networks Boston dataset Neural network regression with the Boston dataset Unsupervised learning in neural networks? Competitive learning Kohonen SOM Summary Deep Learning Using Multilayer Neural Networks Introduction of DNNs R for DNNs Multilayer neural networks with neuralnet Training and modeling a DNN using H2O Deep autoencoders using H2O Summary Perceptron Neural Network Modeling – Basic Models Perceptrons and their applications Simple perceptron – a linear separable classifier Linear separation The perceptron function in R Multi-Layer Perceptron MLP R implementation using RSNNS Summary Training and Visualizing a Neural Network in R Data fitting with neural network Exploratory analysis Neural network model Classifing breast cancer with a neural network Exploratory analysis Neural network model The network training phase Testing the network Early stopping in neural network training Avoiding overfitting in the model Generalization of neural networks Scaling of data in neural network models Ensemble predictions using neural networks Summary Recurrent and Convolutional Neural Networks Recurrent Neural Network The rnn package in R LSTM model Convolutional Neural Networks Step #1 – filtering Step #2 – pooling Step #3 – ReLU for normalization Step #4 – voting and classification in the fully connected layer Common CNN architecture - LeNet Humidity forecast using RNN Summary Use Cases of Neural Networks – Advanced Topics TensorFlow integration with R Keras integration with R MNIST HWR using R LSTM using the iris dataset Working with autoencoders PCA using H2O Autoencoders using H2O Breast cancer detection using darch Summary
欢迎各位热爱编程的朋友们,我们现在所在的这个课程是C++Unit1语法入门课程。在这个课程中,我们将一起探索C++语言的奥秘,一起开启我们的编程之旅。首先,我要告诉你的是,这个课程并不仅仅是一个普通的编程课程,它更像是一把打开你思维大门的钥匙。在这里,你将有机会开发和锻炼自己的逻辑思维能力,提升你的编程头脑。我们将一起学习C++程序的入门语法,通过实例教学,让你更好地理解和掌握这门语言。我们的目标不仅仅是让你学会编程,更重要的是,我们希望通过这个课程,让你能够将所学的知识应用到实际生活中,解决生活中的实际问题。无论是在学习、工作还是生活中,我们都会遇到各种各样的问题,而编程,就是解决问题的一种有效方式。通过学习C++,你将能够用编程的方式,解决一些实际问题,让自己的生活变得更加便捷。此外,编程不仅可以帮助我们解决问题,还可以让我们的生活变得更加丰富。通过编程,我们可以创造出各种各样的程序,这些程序可以帮助我们完成各种任务,提高我们的工作效率,也可以帮助我们实现一些以前无法实现的想法,让我们的生活变得更加多彩。总的来说,这个C++Unit1语法入门课程,将帮助你开启编程之路,提升你的逻辑思维能力,解决实际问题,让你的生活变得更加丰富。让我们一起,开始这段美妙的编程之旅吧!

444

社区成员

发帖
与我相关
我的任务
社区描述
2023年北京航空航天大学《面向对象设计与构造》课程博客
java 高校 北京·海淀区
社区管理员
  • 被Taylor淹没的一条鱼
  • 0逝者如斯夫0
  • Mr.Lin30
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧