请教一下,对于snpe不支持的算子(例如SiLU),我是否可以拆成更低级的形式(x * sigmoid(x))?这样做会有什么问题吗?对于激活函数来说,支持和不支持的边界在哪?

起名困难症患者1 2024-05-14 13:59:22

请教一下,对于snpe不支持的算子(例如SiLU),我是否可以拆成更低级的形式(x * sigmoid(x))?这样做会有什么问题吗?对于激活函数来说,支持和不支持的边界在哪?

...全文
1345 1 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
weixin_38498942 2024-05-14
  • 打赏
  • 举报
回复

可以的,这也是一种比较普遍的做法。所有的激活函数都可以按照表达式拆成低级形式,因此考虑的不是支持和不支持,而是这个激活函数支持的好不好/掉点是不是严重。实际上,SiLU就是一个掉点严重的算子,一种可能的解释是来自于乘法的误差传递。工程上,对于snpe而言,边端的模型使用ReLU6(模型中表现为一个Clip算子)或者HardSwish(snpe支持的hswish算子)会常见一些,其他的需要慎重考虑。

Snapdragon Neural Processing Engine (SNPE) 是 Qualcomm 提供的一套完整的解决方案,旨在优化和加速神经网络模型在 Qualcomm 骁龙(Snapdragon)移动平台上的运行。SNPE 支持多种神经网络框架,如 TensorFlow、Caffe、ONNX 等,并提供了高效的推理引擎和工具链,帮助开发者在移动设备上实现高性能的人工智能应用。 Snapdragon Neural Processing Engine (SNPE) 是由高通公司(Qualcomm)开发的一套软件开发工具包,其目的在于为开发者提供一系列优化和加速神经网络模型在高通骁龙移动平台上的运行能力。随着人工智能技术在移动设备上的普及和重要性的日益增加,SNPE成为了推动移动AI应用发展的关键工具。 SNPE支持多种流行的深度学习框架,包括但不限于TensorFlow、Caffe以及ONNX(开放神经网络交换格式),这使得开发者能够利用他们已有的模型和知识,将这些模型转换并部署在骁龙处理器上。这样的支持为开发者提供极大的便利,因为它们不必从零开始构建模型,而是可以在现有的成果基础上进行优化和调整。 SNPE的核心组件之一是其高效的推理引擎,推理引擎是深度学习模型执行前向传播计算的部分,它负责处理输入数据并生成预测结果。在移动设备上运行复杂的神经网络模型时,高效的推理引擎是至关重要的,因为它能够确保应用运行流畅且电池消耗合理。 此外,SNPE还提供了一系列工具链,这些工具链包括模型转换工具、调试工具和性能分析工具,它们帮助开发者在模型转换、调试和优化等阶段中有效地工作。例如,模型转换工具可以将特定框架的模型转换为SNPE可以识别和运行的格式,而性能分析工具则允许开发者了解模型在特定硬件上的运行效率,进而作出相应的调整。

5,254

社区成员

发帖
与我相关
我的任务
社区描述
本论坛以AI、WoS 、XR、IoT、Auto、生成式AI等核心板块组成,为开发者提供便捷及高效的学习和交流平台。 高通开发者专区主页:https://qualcomm.csdn.net/
人工智能物联网机器学习 技术论坛(原bbs) 北京·东城区
社区管理员
  • csdnsqst0050
  • chipseeker
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧