Collective Test Report

大智若渔_Smart_Fishpond 团队 2024-12-06 15:55:10
Which course does this assignment belong to2401_Mu_SE_FZU
Team NameSmart Fishpond Access
Where is the requirement for this assignmentFifth Assignment——Alpha Sprint
The goal of this assignment

1. To execute project testing via specific modalities

2. To submit and collect all testing reports

Other reference

W3C Web Accessibility Initiative (WAI) - UI Testing for Accessibility

Google Web Fundamentals - Testing UI Performance

Google Core Web Vitals

OpenAPI Specification (Swagger)

Content

1. Arrangement of Project Testing Work

2. Selection and Application of Testing Tools

2.1 Interface test

2.2 UI test

2.3 Stress test

3. Test case

4. Interface test report

5. UI test report

6. Stress test report

7. Test Experiences

8. Project Testing Comments


1. Arrangement of Project Testing Work

There are 5 students in the Testing Group. The distribution of labor (Testing Part) is shown below.

MissionTimeMemberDistribution of Labor
Interface test11.28-11.3083220130620%
Stress test11.2983220131320%
UI test11.3083220132520%
Report Writing11.3083220131820%
Report Writing11.3183220130720%

 

Specifically, the detailed distribution of test categories is shown below.

Test categoriesTimeTest contentSpecificationTester
Interface test11.28Login Page Interface TestLogin , Change, Register, Verify API832201306
Interface test11.29Device Location Page Interface TestgetDeviceLocation, warnLog, newDevice, data, push API832201306
Interface test11.30Intelligent Q&A Page Interface TestgetWord, getAnswer API832201306
Page test11.29Test of All Functions on the PageTest each clickable button on the page one by one832201325
Stress test11.28Stress Test of Interfaces and PagesUse tools to send requests to pages and interfaces and check their states

832201313

2. Selection and Application of Testing Tools

Test categoriesTest tools
Interface testPostman
Page testMicrosoft browser
Stressing testApache Benchmark, ApiPost

2.1 Interface test

Postman is a powerful API testing tool that is commonly used for developing and debugging RESTful APIs. It supports various HTTP request types, including GET, POST, PUT, and DELETE, enabling users to easily create and send requests while monitoring API behavior in real time. Due to its versatility and user-friendly interface, Postman is an excellent choice for addressing the interface testing needs of this project.

2.2 UI test

In this project, we use a functional testing approach for page testing, relying solely on a browser as the essential tool. This ensures comprehensive validation of page functionality and user interactions.

2.3 Stress test

Apache Benchmark (ab) is a widely recognized command-line tool designed to simulate a specified number of concurrent requests. This allows for the assessment of server performance under various load conditions. Its capabilities make it an excellent choice for the page stress testing needs of this project. For API stress testing,</br> ApiPost is a popular tool that is tailored for debugging, testing, and automating API requests. It supports RESTful APIs, SOAP APIs, GraphQL, and other network interfaces. ApiPost also provides advanced features specifically designed to conduct stress tests, ensuring the reliability and performance of the project's APIs.

3. Test case

img

​Fig.1 Test case diagram

As Fig. 1 shown,this project involved three key types of testing: interface testing, UI testing, and stress testing. The interface testing primarily focuses on verifying the functionality of the backend APIs connected to frontend actions, ensuring they respond accurately and perform as expected. In contrast, UI testing evaluates the effectiveness and usability of the frontend features of the application. Stress testing, conducted on both the pages and APIs, assesses their performance and stability under high-load conditions.

Before these tests, white-box testing was already conducted to verify the correctness of the code logic.

Debugging has been completed. All codes runs well as expected.

Additionally, the development team further refactored the core code by removing redundant elements, optimizing performance, and enhancing the overall efficiency and lightweight nature of the code.

Therefore, As a result, two main testing methodologies were employed in this project: functional testing for UI testing and black-box testing for interface and stress testing.

4. Interface test report

In this interface test, the project employs a black-box testing approach to evaluate the system's inputs and outputs without examining its internal workings. The functionality of the interfaces is verified by sending different types of HTTP requests using the Postman tool. The detailed process and results are documented below.

5. UI test report

In this project, interface testing is conducted using a functional testing approach to verify the functionality and interactive behavior of the system's pages. By simulating user interactions, the tests evaluate the performance of interface elements and the consistency of page layouts, ensuring that the design is intuitive and user-friendly. This testing includes assessing the operation of controls such as buttons and input fields, as well as the behavior of interface logic and dynamic components. The detailed processes and results are summarized in the following document.

6. Stress test report

For the stress test, this project utilizes Apache Benchmark for network performance testing and ApiPost for interface stress testing, both adhering to the black-box testing methodology. The main process and results are outlined in the following document.

7. Test Experiences

832201306: In this interface test, I primarily used Postman to evaluate the functionality of the APIs. Each test successfully sent requests and returned results as expected, with response times falling within an acceptable range. For instance, the response time for the newDevice interface was 159 ms, while the data interface had a response time of 88 ms—both of which were within the expected limits. I configured the request headers and bodies in accordance with the interface documentation, and the returned data matched my expectations. During testing, I encountered an issue where the data returned was incorrect due to improperly set request parameters. However, Postman provided detailed error logs and response information, which allowed me to quickly resolve the problem. Overall, this test provided a clear understanding of the interfaces' stability, performance, and accuracy.

832201325: The web interface test was conducted successfully. I reviewed each control on the page, which including buttons, input fields, and drop-down menus to confirm that users could interact with them easily and that the correct functions were triggered. The layout and design remained consistent across mobile phones, tablets, and PCs. Dynamic components like pop-ups and sliders functioned as expected, and the input data was accurately stored in the backend, ensuring data integrity. The interface design was intuitive, navigation was smooth, and the text was clear and easy to understand, leading to an overall positive user experience. In summary, the web interface test demonstrated stable functionality and received favorable feedback from users.

832201313: For the stress test, I utilized Apache Benchmark to evaluate the web pages and ApiPost to assess the APIs, with the goal of determining the system's performance under high traffic conditions. The web page stress test simulated 1,000 requests with 10 concurrent users. The results indicated that the system completed the test in 24.577 seconds, achieving an average response rate of 40.69 responses per second. Additionally, the data transfer rate met our expectations.Taking the get Device Location interface as an example, both the response time and error rate remained within acceptable limits. Overall, the system performed well under moderate load; however, if the user volume significantly increases, further optimizations may be necessary to maintain stability under higher concurrency.

The photos of testing process is hsown below.

8. Project Testing Comments

After comprehensive testing, we have thoroughly validated the stability, reliability, and performance of the cloud function interfaces, as well as the overall functionality of the system. The development team promptly identified and addressed potential issues, ensuring the smooth operation of the web page. The testing phase has been successfully completed, significantly enhancing our testing skills, fostering collaboration, and laying a solid foundation for the project's launch.

Looking ahead, we will continue to optimize the testing process during the beta (β) sprint phase by integrating advanced testing methods and tools to improve both efficiency and quality. We will implement a strategy that synchronizes testing and development throughout the software lifecycle, allowing for early detection and resolution of potential bugs. This approach will significantly reduce the cost of error correction in later stages. With real-time testing and continuous code review processes in place, we will quickly identify and resolve issues, enhancing the software's functionality and stability. Ultimately, this will provide users with an improved experience and support the ongoing, stable development of the project.

 

 

...全文
43 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
Soft computing and nature-inspired computing both play a significant role in developing a better understanding to machine learning. When studied together, they can offer new perspectives on the learning process of machines. The Handbook of Research on Soft Computing and Nature-Inspired Algorithms is an essential source for the latest scholarly research on applications of nature-inspired computing and soft computational systems. Featuring comprehensive coverage on a range of topics and perspectives such as swarm intelligence, speech recognition, and electromagnetic problem solving, this publication is ideally designed for students, researchers, scholars, professionals, and practitioners seeking current research on the advanced workings of intelligence in computing systems. Chapter 1 ApplicationofNatured-InspiredAlgorithmsfortheSolutionofComplexElectromagnetic Problems................................................................................................................................................. 1 Massimo Donelli, University of Trento, Italy Inthelastdecadenature-inspiredOptimizerssuchasgeneticalgorithms(GAs),particleswarm(PSO), antcolony(ACO),honeybees(HB),bacteriafeeding(BFO),firefly(FF),batalgorithm(BTO),invasive weed(IWO)andothersalgorithms,hasbeensuccessfullyadoptedasapowerfuloptimizationtools inseveralareasofappliedengineering,andinparticularforthesolutionofcomplexelectromagnetic problems.Thischapterisaimedatpresentinganoverviewofnatureinspiredoptimizationalgorithms (NIOs)asappliedtothesolutionofcomplexelectromagneticproblemsstartingfromthewell-known geneticalgorithms(GAs)uptorecentcollaborativealgorithmsbasedonsmartswarmsandinspired byswarmofinsects,birdsorflockoffishes.Thefocusofthischapterisontheuseofdifferentkind ofnaturedinspiredoptimizationalgorithmsforthesolutionofcomplexproblems,inparticulartypical microwavedesignproblems,inparticularthedesignandmicrostripantennastructures,thecalibration ofmicrowavesystemsandotherinterestingpracticalapplications.Startingfromadetailedclassification andanalysisofthemostusednaturedinspiredoptimizers(NIOs)thischapterdescribesthenotonly thestructuresofeachNIObutalsothestochasticoperatorsandthephilosophyresponsibleforthe correctevolutionoftheoptimizationprocess.Theoreticaldiscussionsconcernedconvergenceissues, parameterssensitivityanalysisandcomputationalburdenestimationarereportedaswell.Successively abriefreviewonhowdifferentresearchgroupshaveappliedorcustomizeddifferentNIOsapproaches forthesolutionofcomplexpracticalelectromagneticproblemrangingfromindustrialuptobiomedical applications.ItisworthnoticedthatthedevelopmentofCADtoolsbasedonNIOscouldprovidethe engineersanddesignerswithpowerfultoolsthatcanbethesolutiontoreducethetimetomarketof specific devices, (such as modern mobile phones, tablets and other portable devices) and keep the commercialpredominance:sincetheydonotrequireexpertengineersandtheycanstronglyreducethe computationaltimetypicalofthestandardtrialerrorsmethodologies.Suchusefulautomaticdesigntools basedonNIOshavebeentheobjectofresearchsincesomedecadesandtheimportanceofthissubject iswidelyrecognized.Inordertoapplyanaturedinspiredalgorithm,theproblemisusuallyrecastas aglobaloptimizationproblem.Formulatedinsuchaway,theproblemcanbeefficientlyhandledby naturedinspiredoptimizerbydefiningasuitablecostfunction(singleormulti-objective)thatrepresent thedistancebetweentherequirementsandtheobtainedtrialsolution.Thedeviceunderdevelopment  canbeanalyzedwithclassicalnumericalmethodologiessuchasFEM,FDTD,andMoM.Asacommon feature,theseenvironmentsusuallyintegrateanoptimizerandacommercialnumericalsimulator.The chapterendswithopenproblemsanddiscussiononfutureapplications. Chapter 2 AComprehensiveLiteratureReviewonNature-InspiredSoftComputingandAlgorithms:Tabular andGraphicalAnalyses........................................................................................................................ 34 Bilal Ervural, Istanbul Technical University, Turkey Beyzanur Cayir Ervural, Istanbul Technical University, Turkey Cengiz Kahraman, Istanbul Technical University, Turkey SoftComputingtechniquesarecapableofidentifyinguncertaintyindata,determiningimprecisionof knowledge,andanalyzingill-definedcomplexproblems.Thenatureofrealworldproblemsisgenerally complexandtheircommoncharacteristicisuncertaintyowingtothemultidimensionalstructure.Analytical modelsareinsufficientinmanagingallcomplexitytosatisfythedecisionmakers’expectations.Under thisviewpoint,softcomputingprovidessignificantflexibilityandsolutionadvantages.Inthischapter, firstly,themajorsoftcomputingmethodsareclassifiedandsummarized.Thenacomprehensivereviewof eightnatureinspired–softcomputingalgorithmswhicharegeneticalgorithm,particleswarmalgorithm, antcolonyalgorithms,artificialbeecolony,fireflyoptimization,batalgorithm,cuckooalgorithm,and greywolfoptimizeralgorithmarepresentedandanalyzedundersomedeterminedsubjectheadings (classificationtopics)inadetailedway.Thesurveyfindingsaresupportedwithcharts,bargraphsand tablestobemoreunderstandable. Chapter 3 SwarmIntelligenceforElectromagneticProblemSolving................................................................... 69 Luciano Mescia, Politecnico di Bari, Italy Pietro Bia, EmTeSys Srl, Italy Diego Caratelli, The Antenna Company, The Netherlands & Tomsk Polytechnic University, Russia Johan Gielis, University of Antwerp, Belgium ThechapterwilldescribethepotentialoftheswarmintelligenceandinparticularquantumPSO-based algorithm,tosolvecomplicatedelectromagneticproblems.Thistaskisaccomplishedthroughaddressing the design and analysis challenges of some key real-world problems. A detailed definition of the conventionalPSOanditsquantum-inspiredversionarepresentedandcomparedintermsofaccuracyand computationalburden.Sometheoreticaldiscussionsconcerningtheconvergenceissuesandasensitivity analysisontheparametersinfluencingthestochasticprocessarereported. Chapter 4 ParameterSettingsinParticleSwarmOptimization........................................................................... 101 Snehal Mohan Kamalapur, K. K. Wagh Institute of Engineering Education and Research, India Varsha Patil, Matoshree College of Engineering and Research Center, India Theissueofparametersettingofanalgorithmisoneofthemostpromisingareasofresearch.Particle SwarmOptimization(PSO)ispopulationbasedmethod.TheperformanceofPSOissensitivetothe parametersettings.Intheliteratureofevolutionarycomputationtherearetwotypesofparametersettings  - parametertuningandparametercontrol.Staticparametertuningmayleadtopoorperformanceas optimalvaluesofparametersmaybedifferentatdifferentstagesofrun.Thisleadstoparametercontrol. Thischapterhastwo-foldobjectivestoprovideacomprehensivediscussiononparametersettingsandon parametersettingsofPSO.Theobjectivesaretostudyparametertuningandcontrol,togettheinsight ofPSOandimpactofparameterssettingsforparticlesofPSO. Chapter 5 ASurveyofComputationalIntelligenceAlgorithmsandTheirApplications...................................133 Hadj Ahmed Bouarara, Dr. Tahar Moulay University of Saida, Algeria Thischaptersubscribesintheframeworkofananalyticalstudyaboutthecomputationalintelligence algorithms.Thesealgorithmsarenumerousandcanbeclassifiedintwogreatfamilies:evolutionary algorithms(geneticalgorithms,geneticprogramming,evolutionarystrategy,differentialevolutionary, paddyfieldalgorithm)andswarmoptimizationalgorithms(particleswarmoptimisationPSO,antcolony optimization(ACO),bacteriaforagingoptimisation,wolfcolonyalgorithm,fireworksalgorithm,bat algorithm,cockroachescolonyalgorithm,socialspidersalgorithm,cuckoosearchalgorithm,waspswarm optimisation,mosquitooptimisationalgorithm).Wehavedetailedeachalgorithmfollowingastructured organization(theoriginofthealgorithm,theinspirationsource,thesummary,andthegeneralprocess). Thispaperisthefruitofmanyyearsofresearchintheformofsynthesiswhichgroupsthecontributions proposedbyvariousresearchersinthisfield.Itcanbethestartingpointforthedesigningandmodelling newalgorithmsorimprovingexistingalgorithms. Chapter 6 OptimizationofProcessParametersUsingSoftComputingTechniques:ACaseWithWire ElectricalDischargeMachining..........................................................................................................177 Supriyo Roy, Birla Institute of Technology, India Kaushik Kumar, Birla Institute of Technology, India J. Paulo Davim, University of Aveiro, Portugal MachiningofhardmetalsandalloysusingConventionalmachininginvolvesincreaseddemandof time,energyandcost.Itcausestoolwearresultinginlossofqualityoftheproduct.Non-conventional machining,ontheotherhandproducesproductwithminimumtimeandatdesiredlevelofaccuracy.In thepresentstudy,EN19steelwasmachinedusingCNCWireElectricaldischargemachiningwithpredefinedprocessparameters.MaterialRemovalRateandSurfaceroughnesswereconsideredasresponses forthisstudy.Thepresentoptimizationproblemissingleandaswellasmulti-response.Consideringthe complexitiesofthispresentproblem,experimentaldataweregeneratedandtheresultswereanalyzed byusingTaguchi,GreyRelationalAnalysisandWeightedPrincipalComponentAnalysisundersoft computingapproach.Responsesvarianceswiththevariationofprocessparameterswerethoroughly studiedandanalyzed;also‘bestoptimalvalues’wereidentified.Theresultshowsanimprovementin responsesfrommeantooptimalvaluesofprocessparameters.  Chapter 7 AugmentedLagrangeHopfieldNetworkforCombinedEconomicandEmissionDispatchwith FuelConstraint.................................................................................................................................... 221 Vo Ngoc Dieu, Ho Chi Minh City University of Technology, Vietnam Tran The Tung, Ho Chi Minh City University of Technology, Vietnam This chapter proposes an augmented Lagrange Hopfield network (ALHN) for solving combined economicandemissiondispatch(CEED)problemwithfuelconstraint.IntheproposedALHNmethod, theaugmentedLagrangefunctionisdirectlyusedastheenergyfunctionofcontinuousHopfieldneural network(HNN),thusthismethodcanproperlyhandleconstraintsbybothaugmentedLagrangefunction andsigmoidfunctionofcontinuousneuronsintheHNN.Fordealingwiththebi-objectiveeconomic dispatchproblem,theslopeofsigmoidfunctioninHNNisadjustedtofindthePareto-optimalfrontand thenthebestcompromisesolutionfortheproblemwillbedeterminedbyfuzzy-basedmechanism.The proposedmethodhasbeentestedonmanycasesandtheobtainedresultsarecomparedtothosefrom othermethodsavailabletheliterature.Thetestresultshaveshownthattheproposedmethodcanfind goodsolutionscomparedtotheothersforthetestedcases.Therefore,theproposedALHNcouldbea favourableimplementationforsolvingtheCEEDproblemwithfuelconstraint. Chapter 8 SpeakerRecognitionWithNormalandTelephonicAssameseSpeechUsingI-Vectorand Learning-BasedClassifier................................................................................................................... 256 Mridusmita Sharma, Gauhati University, India Rituraj Kaushik, Tezpur University, India Kandarpa Kumar Sarma, Gauhati University, India Speaker recognition is the task of identifying a person by his/her unique identification features or behaviouralcharacteristicsthatareincludedinthespeechutteredbytheperson.Speakerrecognition dealswiththeidentityofthespeaker.Itisabiometricmodalitywhichusesthefeaturesofthespeaker thatisinfluencedbyone’sindividualbehaviouraswellasthecharacteristicsofthevocalcord.Theissue becomesmorecomplexwhenregionallanguagesareconsidered.Here,theauthorsreportthedesignof aspeakerrecognitionsystemusingnormalandtelephonicAssamesespeechfortheircasestudy.Intheir work,theauthorshaveimplementedi-vectorsasfeaturestogenerateanoptimalfeaturesetandhaveused theFeedForwardNeuralNetworkfortherecognitionpurposewhichgivesafairlyhighrecognitionrate. Chapter 9 ANewSVMMethodforRecognizingPolarityofSentimentsinTwitter.......................................... 281 Sanjiban Sekhar Roy, VIT University, India Marenglen Biba, University of New York – Tirana, Albania Rohan Kumar, VIT University, India Rahul Kumar, VIT University, India Pijush Samui, NIT Patna, India Onlinesocialnetworkingplatforms,suchasWeblogs,microblogs,andsocialnetworksareintensively beingutilizeddailytoexpressindividual’sthinking.Thispermitsscientiststocollecthugeamountsof dataandextractsignificantknowledgeregardingthesentimentsofalargenumberofpeopleatascale thatwasessentiallyimpracticalacoupleofyearsback.Therefore,thesedays,sentimentanalysishasthe potentialtolearnsentimentstowardspersons,objectandoccasions.Twitterhasincreasinglybecome  a significantsocialnetworkingplatformwherepeoplepostmessagesofupto140charactersknownas ‘Tweets’.Tweetshavebecomethepreferredmediumforthemarketingsectorasuserscaninstantlyindicate customersuccessorindicatepublicrelationsdisasterfarmorequicklythanawebpageortraditional mediadoes.Inthispaper,wehaveanalyzedtwitterdataandhavepredictedpositiveandnegativetweets withhighaccuracyrateusingsupportvectormachine(SVM). Chapter 10 AutomaticGenerationControlofMulti-AreaInterconnectedPowerSystemsUsingHybrid EvolutionaryAlgorithm...................................................................................................................... 292 Omveer Singh, Maharishi Markandeshwar University, India Anewtechniqueofevaluatingoptimalgainsettingsforfullstatefeedbackcontrollersforautomatic generationcontrol(AGC)problembasedonahybridevolutionaryalgorithms(EA)i.e.geneticalgorithm (GA)-simulatedannealing(SA)isproposedinthischapter.ThehybridEAalgorithmcantakedynamic curveperformanceashardconstraintswhicharepreciselyfollowedinthesolutions.Thisisincontrast tothemodernandsinglehybridevolutionarytechniquewheretheseconstraintsaretreatedassoft/hard constraints.Thistechniquehasbeeninvestigatedonanumberofcasestudiesandgivessatisfactorysolutions. Thistechniqueisalsocomparedwithlinearquadraticregulator(LQR)andGAbasedproportionalintegral (PI)controllers.Thisprovestobeagoodalternativeforoptimalcontroller’sdesign.Thistechniquecan beeasilyenhancedtoincludemorespecificationsviz.settlingtime,risetime,stabilityconstraints,etc. Chapter 11 MathematicalOptimizationbyUsingParticleSwarmOptimization,GeneticAlgorithm,and DifferentialEvolutionandItsSimilarities.......................................................................................... 325 Shailendra Aote, Ramdeobaba College of Engineering and Management, India Mukesh M. Raghuwanshi, Yeshwantrao Chavan College of Engineering, India Tosolvetheproblemsofoptimization,variousmethodsareprovidedindifferentdomain.Evolutionary computing(EC)isoneofthemethodstosolvetheseproblems.MostlyusedECtechniquesareavailable likeParticleSwarmOptimization(PSO),GeneticAlgorithm(GA)andDifferentialEvolution(DE). Thesetechniqueshavedifferentworkingstructurebuttheinnerworkingstructureissame.Different namesandformulaearegivenfordifferenttaskbutultimatelyalldothesame.Herewetriedtofindout thesimilaritiesamongthesetechniquesandgivetheworkingstructureineachstep.Allthestepsare providedwithproperexampleandcodewritteninMATLAB,forbetterunderstanding.Herewestarted ourdiscussionwithintroductionaboutoptimizationandsolutiontooptimizationproblemsbyPSO,GA andDE.Finally,wehavegivenbriefcomparisonofthese. Chapter 12 GA_SVM:AClassificationSystemforDiagnosisofDiabetes.......................................................... 359 Dilip Kumar Choubey, Birla Institute of Technology Mesra, India Sanchita Paul, Birla Institute of Technology Mesra, India Themodernsocietyispronetomanylife-threateningdiseaseswhichifdiagnosisearlycanbeeasily controlled.Theimplementationofadiseasediagnosticsystemhasgainedpopularityovertheyears.The mainaimofthisresearchistoprovideabetterdiagnosisofdiabetes.Therearealreadyseveralexisting methods,whichhavebeenimplementedforthediagnosisofdiabetes.Inthismanuscript,firstly,Polynomial Kernel,RBFKernel,SigmoidFunctionKernel,LinearKernelSVMusedfortheclassificationofPIDD.  SecondlyGAusedasanAttributeselectionmethodandthenusedPolynomialKernel,RBFKernel, SigmoidFunctionKernel,LinearKernelSVMonthatselectedattributesofPIDDforclassification.So, herecomparedtheresultswithandwithoutGAinPIDD,andLinearKernelprovedbetteramongallof thenotedaboveclassificationmethods.ItdirectlyseemsinthepaperthatGAisremovinginsignificant features,reducingthecostandcomputationtimeandimprovingtheaccuracy,ROCofclassification. Theproposedmethodcanbealsousedforotherkindsofmedicaldiseases. Chapter 13 TheInsectsofNature-InspiredComputationalIntelligence............................................................... 398 Sweta Srivastava, B.I.T. Mesra, India Sudip Kumar Sahana, B.I.T. Mesra, India Thedesirablemeritsoftheintelligentcomputationalalgorithmsandtheinitialsuccessinmanydomains haveencouragedresearcherstoworktowardstheadvancementofthesetechniques.Amajorplunge inalgorithmicdevelopmenttosolvetheincreasinglycomplexproblemsturnedoutasbreakthrough towardsthedevelopmentofcomputationalintelligence(CI)techniques.Natureprovedtobeoneofthe greatestsourcesofinspirationfortheseintelligentalgorithms.Inthischapter,computationalintelligence techniquesinspiredbyinsectsarediscussed.Thesetechniquesmakeuseoftheskillsofintelligent agentbymimickinginsectbehaviorsuitablefortherequiredproblem.Thediversitiesinthebehaviorof theinsectfamiliesandsimilaritiesamongthemthatareusedbyresearchersforgeneratingintelligent techniquesarealsodiscussedinthischapter. Chapter 14 Bio-InspiredComputationalIntelligenceandItsApplicationtoSoftwareTesting............................ 429 Abhishek Pandey, UPES Dehradun, India Soumya Banerjee, BIT Mesra, India Bioinspiredalgorithmsarecomputationalprocedureinspiredbytheevolutionaryprocessofnature andswarmintelligencetosolvecomplexengineeringproblems.Intherecenttimesithasgainedmuch popularityintermsofapplicationstodiverseengineeringdisciplines.Nowadaysbioinspiredalgorithms arealsoappliedtooptimizethesoftwaretestingprocess.Inthischapterauthorswilldiscusssomeof thepopularbioinspiredalgorithmsandalsogivestheframeworkofapplicationofthesealgorithmsfor softwaretestingproblemssuchastestcasegeneration,testcaseselection,testcaseprioritization,test caseminimization.Bioinspiredcomputationalalgorithmsincludesgeneticalgorithm(GA),genetic programming (GP), evolutionary strategies (ES), evolutionary programming (EP) and differential evolution(DE)intheevolutionaryalgorithmscategoryandAntcolonyoptimization(ACO),Particle swarmoptimization(PSO),ArtificialBeeColony(ABC),Fireflyalgorithm(FA),Cuckoosearch(CS), Batalgorithm(BA)etc.intheSwarmIntelligencecategory(SI).  Chapter 15 Quantum-InspiredComputationalIntelligenceforEconomicEmissionDispatchProblem.............. 445 Fahad Parvez Mahdi, Universiti Teknologi Petronas, Malaysia Pandian Vasant, Universiti Teknologi Petronas, Malaysia Vish Kallimani, Universiti Teknologi Petronas, Malaysia M. Abdullah-Al-Wadud, King Saud University, Saudi Arabia Junzo Watada, Universiti Teknologi Petronas, Malaysia Economicemissiondispatch(EED)problemsareoneofthemostcrucialproblemsinpowersystems. Growingenergydemand,limitedreservesoffossilfuelandglobalwarmingmakethistopicintothe centerofdiscussionandresearch.Inthischapter,wewilldiscusstheuseandscopeofdifferentquantum inspiredcomputationalintelligence(QCI)methodsforsolvingEEDproblems.Wewillevaluateeach previouslyusedQCImethodsforEEDproblemanddiscusstheirsuperiorityandcredibilityagainst othermethods.WewillalsodiscussthepotentialityofusingotherquantuminspiredCImethodslike quantumbatalgorithm(QBA),quantumcuckoosearch(QCS),andquantumteachingandlearningbased optimization(QTLBO)techniqueforfurtherdevelopmentinthisarea. Chapter 16 IntelligentExpertSystemtoOptimizetheQuartzCrystalMicrobalance(QCM)Characterization Test:IntelligentSystemtoOptimizetheQCMCharacterizationTest............................................... 469 Jose Luis Calvo-Rolle, University of A Coruña, Spain José Luis Casteleiro-Roca, University of A Coruña, Spain María del Carmen Meizoso-López, University of A Coruña, Spain Andrés José Piñón-Pazos, University of A Coruña, Spain Juan Albino Mendez-Perez, Universidad de La Laguna, Spain Thischapterdescribesanapproachtoreducesignificantlythetimeinthefrequencysweeptestofa QuartzCrystalMicrobalance(QCM)characterizationmethodbasedontheresonanceprincipleofpassive components.Onthistest,thespenttimewaslarge,becauseitwasnecessarycarryoutabigfrequency sweepduetothefactthattheresonancefrequencywasunknown.Moreover,thisfrequencysweephas greatstepsandconsequentlylowaccuracy.Then,itwasnecessarytoreducethesweepsanditssteps graduallywiththeaimtoincreasetheaccuracyandtherebybeingabletofindtheexactfrequency.An intelligentexpertsystemwascreatedasasolutiontothedisadvantagedescribedofthemethod.This modelprovidesamuchsmallerfrequencyrangethantheinitiallyemployedwiththeoriginalproposal. Thisfrequencyrangedependsofthecircuitcomponentsofthemethod.Then,thankstothenewapproach oftheQCMcharacterizationisachievedbetteraccuracyandthetesttimeisreducedsignificantly. Chapter 17 OptimizationThroughNature-InspiredSoft-ComputingandAlgorithmonECGProcess................ 489 Goutam Kumar Bose, Haldia Institute of Technology, India Pritam Pain, Haldia Institute of Technology, India Inthepresentresearchworkselectionofsignificantmachiningparametersdependingonnature-inspired algorithmisprepared,duringmachiningalumina-aluminuminterpenetratingphasecompositesthrough electrochemical grinding process. Here during experimentation control parameters like electrolyte concentration(C),voltage(V),depthofcut(D)andelectrolyteflowrate(F)areconsidered.Theresponse dataareinitiallytrainedandtestedapplyingArtificialNeuralNetwork.Theparadoxicalresponseslike  highermaterialremovalrate(MRR),lowersurfaceroughness(Ra),lowerovercut(OC)andlowercutting force(Fc)areaccomplishedindividuallybyemployingCuckooSearchAlgorithm.Amultiresponse optimizationforalltheresponseparametersiscompiledprimarilybyusingGeneticalgorithm.Finally, inordertoachieveasinglesetofparametriccombinationforalltheoutputssimultaneouslyfuzzy basedGreyRelationalAnalysistechniqueisadopted.Thesenature-drivensoftcomputingtechniques corroborateswellduringtheparametricoptimizationofECGprocess. Chapter 18 AnOverviewoftheLastAdvancesandApplicationsofArtificialBeeColonyAlgorithm.............. 520 Airam Expósito Márquez, University of La Laguna, Spain Christopher Expósito-Izquierdo, University of La Laguna, Spain SwarmIntelligenceisdefinedascollectivebehaviorofdecentralizedandself-organizedsystemsofa naturalorartificialnature.Inthelastyearsandtoday,SwarmIntelligencehasproventobeabranchof ArtificialIntelligencethatisabletosolvingefficientlycomplexoptimizationproblems.SomeofwellknownexamplesofSwarmIntelligenceinnaturalsystemsreportedintheliteraturearecolonyofsocial insectssuchasbeesandants,birdflocks,fishschools,etc.Inthisrespect,ArtificialBeeColonyAlgorithm isanatureinspiredmetaheuristic,whichimitatesthehoneybeeforagingbehaviourthatproducesan intelligentsocialbehaviour.ABChasbeenusedsuccessfullytosolveawidevarietyofdiscreteand continuousoptimizationproblems.InordertofurtherenhancethestructureofArtificialBeeColony, thereareavarietyofworksthathavemodifiedandhybridizedtoothertechniquesthestandardversion ofABC.Thisworkpresentsareviewpaperwithasurveyofthemodifications,variantsandapplications oftheArtificialBeeColonyAlgorithm. Chapter 19 ASurveyoftheCuckooSearchandItsApplicationsinReal-WorldOptimizationProblems........... 541 Christopher Expósito-Izquierdo, University of La Laguna, Spain Airam Expósito-Márquez, University of La Laguna, Spain ThechapterathandseekstoprovideageneralsurveyoftheCuckooSearchAlgorithmanditsmost highlightedvariants.TheCuckooSearchAlgorithmisarelativelyrecentnature-inspiredpopulationbasedmeta-heuristicalgorithmthatisbaseduponthelifestyle,egglaying,andbreedingstrategyof somespeciesofcuckoos.Inthiscase,theLévyflightisusedtomovethecuckooswithinthesearch spaceoftheoptimizationproblemtosolveandobtainasuitablebalancebetweendiversificationand intensification.Asdiscussedinthischapter,theCuckooSearchAlgorithmhasbeensuccessfullyapplied toawiderangeofheterogeneousoptimizationproblemsfoundinpracticalapplicationsoverthelast fewyears.Someofthereasonsofitsrelevancearethereducednumberofparameterstoconfigureand itseaseofimplementation.

171

社区成员

发帖
与我相关
我的任务
社区描述
2401_MU_SE_FZU
软件工程 高校
社区管理员
  • FZU_SE_TeacherL
  • 助教-吴可仪
  • 助教-孔志豪
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧