3,773
社区成员




| 9 | attn_0_head_1_key_Conv | Conv2d | /model_layers_0_self_attn_Transpose/Transpose_output_0.nhwc (data type: uFxp_16; tensor dimension: [1,1,128,896]; tensor type: NATIVE) | attn_0_head_1_key_Conv/output (data type: uFxp_16; tensor dimension: [1,1,128,64]; tensor type: NATIVE) | 1x1x128x64 | A D G C | attn_0_head_1_key.weight encoding for channel_0: bitwidth 8, min -0.859375000000, max 0.852661132812, scale 0.006713867188, offset 0.000000000000 |
| | | | attn_0_head_1_key.weight (data type: sFxp_8; tensor dimension: [1,1,896,64]; tensor type: STATIC) | | | | axis-quant: axis: 3, num_elements: 64 (above encoding is only for the first (channel_0) of 64 channels) |
| | | | attn_0_head_1_key.bias (data type: sFxp_32; tensor dimension: [64]; tensor type: STATIC) | | | | attn_0_head_1_key.bias encoding for channel_0: bitwidth 32, min -1642.134643554688, max 1642.134643554688, scale 0.000000764679, offset 0.000000000000
在高通量化(如8位或更低位宽)中,Bias(偏差)的影响主要来源于量化过程中对连续值离散化时的误差累积,尤其在模型权重或激活值分布不均匀时更为显著。针对Qwen等大语言模型,量化偏差可能导致性能显著下降,需从以下方向系统解决:
[-128, 127]
),非对称量化(如[0, 255]
)通过引入零点(Zero-Point)更贴合实际分布,尤其适合ReLU等激活函数的输出偏移问题。处理高通量化中的Bias需结合校准、策略、训练与结构优化。对于Qwen等大模型,混合精度+QAT+非对称量化的组合方案可能效果最佳,同时需针对其注意力机制和词嵌入层做特殊处理。最终需通过AB测试验证不同策略在下游任务(如文本生成、推理)中的实际影响。